Analytical and Bioanalytical Chemistry

, Volume 411, Issue 19, pp 4951–4961 | Cite as

Magnetic nanocomposites: versatile tool for the combination of immunomagnetic separation with flow-based chemiluminescence immunochip for rapid biosensing of Staphylococcal enterotoxin B in milk

  • Angelika Nistler
  • Reinhard Niessner
  • Michael SeidelEmail author
Research Paper
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry


Immunomagnetic separation (IMS) was combined with flow-based chemiluminescence sandwich immunoassays (CL-SIA) for the quantification of Staphylococcal enterotoxin B in milk. Therefore, iron oxide-shell silica-core magnetic nanocomposites were conjugated to biotinylated anti-SEB antibodies (MNC-IgGs). MNC-IgGs were applied successfully for (i) capturing SEB in milk samples by an affinity reaction, (ii) magnetophoretic collection on antibody spots in a channel of a flow-based immunochip, and (iii) sensitive enzymatic chemiluminescence detection of biotin labels by poly(horseradish peroxidase)–streptavidin. IMS was performed in 0.6 mL and 100 mL milk samples resulting in detection limits of 50 ng L−1 and 0.39 ng L−1, respectively, for the combined analytical method. It was shown that the assay sensitivity was dramatically improved by the combination of IMS with flow-based CL-SIA compared to CL-SIA directly applied with milk samples (detection limit 130 ng L−1). The IMS-CL-SIA has a time-to-result of 2–3 h. The reported combined analytical method can be used for a rapid control of SEB in complex food matrices such as milk. In future, even the monitoring of multiple contaminants in food or water may be performed by IMS-CL-SIA.

Graphical abstract


Immunomagnetic separation Chemiluminescence Flow-based immunoassays Food safety Staphylococcal enteroxin B Magnetic nanocomposites 



The authors thank Dr. Brigitte Dorner (Robert-Koch Institute, Center of Biological Threats and Special Pathogens, Berlin, Germany) for providing the monoclonal detection antibody mAB S419/5/5 and capturing antibody mAb S1001/4/6.


This work was funded by Bundesministerium für Bildung und Forschung (BMBF)–LEVERA (FKZ: 13N12613) and TUM International Graduate School of Science and Engineering (MiCSMaP, No. 9.06).

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Hennekinne JA, De Buyser ML, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev. 2012;36(4):815–36.CrossRefPubMedGoogle Scholar
  2. 2.
    De Buyser ML, Dufour B, Maire M, Lafarge V. Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int J Food Microbiol. 2001;67(1–2):1–17.CrossRefPubMedGoogle Scholar
  3. 3.
    Normanno G, La Salandra G, Dambrosio A, Quaglia N, Corrente M, Parisi A, et al. Occurrence, characterization and antimicrobial resistance of enterotoxigenic Staphylococcus aureus isolated from meat and dairy products. Int J Food Microbiol. 2007;115(3):290–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Pinchuk IV, Beswick EJ, Reyes VE. Staphylococcal enterotoxins. Toxins. 2010;2(8):2177–97.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Oliver SP, Jayarao BM, Almeida RA. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis. 2005;2(2):115–29.CrossRefPubMedGoogle Scholar
  6. 6.
    Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genet Mol Res. 2003;2(1):63–76.PubMedGoogle Scholar
  7. 7.
    Bhatia A, Zahoor S. Staphylococcus aureus enterotoxins: a review. J Clin Diagn Res. 2007;3(1):188–97.Google Scholar
  8. 8.
    Szinicz L. History of chemical and biological warfare agents. Toxicology. 2005;214(3):167–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Egan M, Raats M, Grubb S, Eves A, Lumbers M, Dean M, et al. A review of food safety and food hygiene training studies in the commercial sector. Food Control. 2007;18(10):1180–90.CrossRefGoogle Scholar
  10. 10.
    Aung MM, Chang YS. Traceability in a food supply chain: safety and quality perspectives. Food Control. 2014;39:172–84.CrossRefGoogle Scholar
  11. 11.
    Cretenet M, Even S, Le Loir Y. Interactions between Staphylococcus aureus and lactic acid bacteria: an old story with new perspectives. Dairy Sci Technol. 2011;91(2):127–50.CrossRefGoogle Scholar
  12. 12.
    Szkola A, Linares E, Worbs S, Dorner B, Dietrich R, Märtlbauer E, et al. Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay. Analyst. 2014;139(22):5885–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Shriver-Lake LC, Shubin YS, Ligler FS. Array biosensor for detection of toxins. J Food Protect. 2003;66(10):1851–6.CrossRefGoogle Scholar
  14. 14.
    Lian W, Wu D, Lim DV, Jin S. Sensitive detection of multiplex toxins using antibody microarray. Anal Biochem. 2010;401(2):271–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Homola J, Dostalek J, Chen S, Rasooly A, Jiang S, Yee SS. Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Intern J Food Microbiol. 2002;75(1–2):61–9.CrossRefGoogle Scholar
  16. 16.
    Garber EA, Venkateswaran KV, O’Brien TW. Simultaneous multiplex detection and confirmation of the proteinaceous toxins abrin, ricin, botulinum toxins, and Staphylococcus enterotoxins A, B, and C in food. J Agric Food Chem. 2010;58(11):6600–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Pauly D, Kirchner S, Stoermann B, Schreiber T, Kaulfuss S, Schade R, et al. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst. 2009;134(10):2028–39.CrossRefPubMedGoogle Scholar
  18. 18.
    Yu H. Use of an immunomagnetic separation–fluorescent immunoassay (IMS–FIA) for rapid and high throughput analysis of environmental water samples. Anal Chim Acta. 1998;376(1):77–81.CrossRefGoogle Scholar
  19. 19.
    Schlosser G, Kačer P, Kuzma M, Szilágyi Z, Sorrentino A, Manzo C, et al. Coupling immunomagnetic separation on magnetic beads with matrix-assisted laser desorption ionization-time of flight mass spectrometry for detection of staphylococcal enterotoxin B. Appl Environ Microbiol. 2007;73(21):6945–52.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shlyapnikov YM, Shlyapnikova EA, Simonova MA, Shepelyakovskaya AO, Brovko FA, Komaleva RL, et al. Rapid simultaneous ultrasensitive immunodetection of five bacterial toxins. Anal Chem. 2012;84(13):5596–603.CrossRefPubMedGoogle Scholar
  21. 21.
    Nistler A, Hartmann C, Rümenapp C, Opel M, Gleich B, Ivleva NP, et al. Production and characterization of long-term stable superparamagnetic iron oxide-shell silica-core nanocomposites. J Magnet Magn Mat. 2017;442:497–503.CrossRefGoogle Scholar
  22. 22.
    Bloemen M, Brullot W, Luong TT, Geukens N, Gils A, Verbiest T. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J Nanopart Res. 2012;14(9):1100.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nistler AM. Magnetic nanocomposites for rapid biosensing of staphylococcal enterotoxin B in milk. Doctoral dissertation, Technical University of Munich 2018.Google Scholar
  24. 24.
    Wolter A, Niessner R, Seidel M. Preparation and characterization of functional poly(ethylene glycol) surfaces for the use of antibody microarrays. Anal Chem. 2007;79(12):4529–37.CrossRefPubMedGoogle Scholar
  25. 25.
    Donhauser SC, Niessner R, Seidel M. Quantification of E. coli DNA on a flow-through chemiluminescence microarray readout system after PCR amplification. Anal Sci. 2009;25(5):669–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Wutz K, Meyer VK, Wachek S, Krol P, Gareis M, Nölting C, et al. New route for fast detection of antibodies against zoonotic pathogens in sera of slaughtered pigs by means of flow-through chemiluminescence immunochips. Anal Chem. 2014;85:5279–85.CrossRefGoogle Scholar
  27. 27.
    Seidel M, Niessner R. Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem. 2014;406(23):5589–612.CrossRefPubMedGoogle Scholar
  28. 28.
    Kloth K, Niessner R, Seidel M. Development of an open stand-alone platform for regenerable automated microarrays. Biosens Bioelectron. 2009;24(7):2106–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Kunze A, Dilcher M, Abd El Wahed A, Hufert F, Niessner R, Seidel M. On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria. Anal Chem. 2016;88(1):898–905.CrossRefPubMedGoogle Scholar
  30. 30.
    Langer V, Hartmann G, Niessner R, Seidel M. Rapid quantification of bioaerosols containing L. pneumophila by Coriolis® μ air sampler and chemiluminescence antibody microarrays. J Aerosol Sci. 2012;48:46–55.CrossRefGoogle Scholar
  31. 31.
    Morozov VN, Groves S, Turell MJ, Bailey C. Three minutes-long electrophoretically assisted zeptomolar microfluidic immunoassay with magnetic-beads detection. J Am Chem Soc. 2007;129(42):12628–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Angelika Nistler
    • 1
  • Reinhard Niessner
    • 1
  • Michael Seidel
    • 1
    Email author
  1. 1.Chair of Analytical Chemistry and Water ChemistryTechnical University of MunichMunichGermany

Personalised recommendations