Advertisement

Ultra-high-resolution ion mobility spectrometry—current instrumentation, limitations, and future developments

  • Ansgar T. KirkEmail author
  • Alexander Bohnhorst
  • Christian-Robert Raddatz
  • Maria Allers
  • Stefan Zimmermann
Review
Part of the following topical collections:
  1. Close-Up of Current Developments in Ion Mobility Spectrometry

Abstract

With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving power are explained and compared between the different instruments. This allows understanding the current limitations of resolving power and how ion mobility spectrometers may progress in the future.

Graphical abstract

Keywords

Ion mobility spectrometry (IMS) Drift tube Traveling wave Trapped IMS Differential IMS Field asymmetric IMS 

Notes

Funding information

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—ZI 1288/4–1 and ZI 1288/7-1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Puton J, Namieśnik J. Ion mobility spectrometry - current status and application for chemical warfare agents detection. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.06.002.
  2. 2.
    Eiceman GA, Stone JA. Peer reviewed: ion mobility spectrometers in national defense. Anal Chem. 2004.  https://doi.org/10.1021/ac041665c.
  3. 3.
    Mäkinen M, Nousiainen M, Sillanpää M. Ion spectrometric detection technologies for ultra-traces of explosives: a review. Mass Spectrom Rev. 2011.  https://doi.org/10.1002/mas.20308.
  4. 4.
    Buryakov IA. Detection of explosives by ion mobility spectrometry. J Anal Chem. 2011.  https://doi.org/10.1134/S1061934811080077.
  5. 5.
    Borsdorf H, Eiceman GA. Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev. 2006.  https://doi.org/10.1080/05704920600663469.
  6. 6.
    Eiceman GA, Karpas Z, Hill HH. Ion mobility spectrometry. 3rd ed. Boca Raton: CRC Press; 2013.Google Scholar
  7. 7.
    Vautz W, Zimmermann D, Hartmann M, Baumbach JI, Nolte J, Jung J. Ion mobility spectrometry for food quality and safety. Food Addit Contam. 2006.  https://doi.org/10.1080/02652030600889590.
  8. 8.
    Karpas Z. Applications of ion mobility spectrometry (IMS) in the field of foodomics. Food Res Int. 2013.  https://doi.org/10.1016/j.foodres.2012.11.029.
  9. 9.
    Hernández-Mesa M, Escourrou A, Monteau F, Le Bizec B, Dervilly-Pinel G. Current applications and perspectives of ion mobility spectrometry to answer chemical food safety issues. TrAC Trends Anal Chem. 2017.  https://doi.org/10.1016/j.trac.2017.07.006.
  10. 10.
    O’Donnell RM, Sun X, Harrington P d B. Pharmaceutical applications of ion mobility spectrometry. TrAC Trends Anal Chem. 2008.  https://doi.org/10.1016/j.trac.2007.10.014.
  11. 11.
    Campuzano ID, Lippens JL. Ion mobility in the pharmaceutical industry - an established biophysical technique or still niche? Curr Opin Chem Biol. 2018.  https://doi.org/10.1016/j.cbpa.2017.11.008.
  12. 12.
    Baumbach JI. Process analysis using ion mobility spectrometry. Anal Bioanal Chem. 2006.  https://doi.org/10.1007/s00216-005-3397-8.
  13. 13.
    Baumbach JI. Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Res. 2009.  https://doi.org/10.1088/1752-7155/3/3/034001.
  14. 14.
    Fink T, Baumbach JI, Kreuer S. Ion mobility spectrometry in breath research. J Breath Res. 2014.  https://doi.org/10.1088/1752-7155/8/2/027104.
  15. 15.
    Clemmer DE, Jarrold MF. Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom. 1997.  https://doi.org/10.1002/(SICI)1096-9888(199706)32:6<577:AID-JMS530>3.0.CO;2-4.
  16. 16.
    Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CL. Paul. Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst. 2004.  https://doi.org/10.1039/b404531a.
  17. 17.
    Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE. Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem (Palo Alto, Calif.). 2008.  https://doi.org/10.1146/annurev.anchem.1.031207.113001.
  18. 18.
    Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck, Albert JR. Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev. 2010.  https://doi.org/10.1039/b914002f.
  19. 19.
    Kliman M, May JC, McLean JA. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta. 2011.  https://doi.org/10.1016/j.bbalip.2011.05.016.
  20. 20.
    Williams DM, Pukala TL. Novel insights into protein misfolding diseases revealed by ion mobility-mass spectrometry. Mass Spectrom Rev. 2013.  https://doi.org/10.1002/mas.21358.
  21. 21.
    Konijnenberg A, Butterer A, Sobott F. Native ion mobility-mass spectrometry and related methods in structural biology. Biochim Biophys Acta. 2013.  https://doi.org/10.1016/j.bbapap.2012.11.013.
  22. 22.
    Zhong Y, Hyung S-J, Ruotolo BT. Ion mobility-mass spectrometry for structural proteomics. Expert Rev Proteomics. 2012.  https://doi.org/10.1586/epr.11.75.
  23. 23.
    Gray CJ, Thomas B, Upton R, Migas LG, Eyers CE, Barran PE, et al. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta. 2016.  https://doi.org/10.1016/j.bbagen.2016.02.003.
  24. 24.
    Paglia G, Kliman M, Claude E, Geromanos S, Astarita G. Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem. 2015.  https://doi.org/10.1007/s00216-015-8664-8.
  25. 25.
    Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, et al. Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Annu Rev Anal Chem (Palo Alto, Calif.). 2017.  https://doi.org/10.1146/annurev-anchem-061516-045212.
  26. 26.
    Stephan S, Jakob C, Hippler J, Schmitz OJ. A novel four-dimensional analytical approach for analysis of complex samples. Anal Bioanal Chem. 2016.  https://doi.org/10.1007/s00216-016-9460-9.
  27. 27.
    Lipok C, Hippler J, Schmitz OJ. A four dimensional separation method based on continuous heart-cutting gas chromatography with ion mobility and high resolution mass spectrometry. J Chromatogr A. 2018.  https://doi.org/10.1016/j.chroma.2017.07.013.
  28. 28.
    Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem. 2014.  https://doi.org/10.1038/nchem.1889.
  29. 29.
    Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst. 2014.  https://doi.org/10.1039/c4an01100g.
  30. 30.
    Ewing MA, Glover MS, Clemmer DE. Hybrid ion mobility and mass spectrometry as a separation tool. J Chrom A. 2016.  https://doi.org/10.1016/j.chroma.2015.10.080.
  31. 31.
    Mason EA, McDaniel EW. Transport properties of ions in gases. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA; 1988.CrossRefGoogle Scholar
  32. 32.
    Heiche G, Mason EA. Ion mobilities with charge exchange. J Chem Phys. 1970.  https://doi.org/10.1063/1.1673997.
  33. 33.
    Siems WF, Viehland LA, Hill HH. Improved momentum-transfer theory for ion mobility. 1. Derivation of the fundamental equation. Anal Chem. 2012.  https://doi.org/10.1021/ac301779s.
  34. 34.
    Viehland LA, Mason EA. Gaseous lon mobility in electric fields of arbitrary strength. Ann Phys. 1975.  https://doi.org/10.1016/0003-4916(75)90233-X.
  35. 35.
    Viehland LA, Mason EA. Gaseous ion mobility and diffusion in electric fields of arbitrary strength. Ann Phys. 1978.  https://doi.org/10.1016/0003-4916(78)90034-9.
  36. 36.
    Lin SL, Viehland LA, Mason EA. Three-temperature theory of gaseous ion transport. Chem Phys. 1979.  https://doi.org/10.1016/0301-0104(79)85040-5.
  37. 37.
    Viehland LA, Lin SL. Application of the three-temperatue theory of gaseous ion transport. Chem Phys. 1979.  https://doi.org/10.1016/0301-0104(79)80112-3.
  38. 38.
    Siems WF, Viehland LA, Hill HH. Correcting the fundamental ion mobility equation for field effects. Analyst. 2016.  https://doi.org/10.1039/c6an01353h.
  39. 39.
    Yousef A, Shrestha S, Viehland LA, Lee EPF, Gray BR, Ayles VL, et al. Interaction potentials and transport properties of coinage metal cations in rare gases. J Chem Phys. 2007.  https://doi.org/10.1063/1.2774977.
  40. 40.
    Barber S, Blake RS, White IR, Monks PS, Reich F, Mullock S, et al. Increased sensitivity in proton transfer reaction mass spectrometry by incorporation of a radio frequency ion funnel. Anal Chem. 2012.  https://doi.org/10.1021/ac300894t.
  41. 41.
    Shvartsburg AA, Clemmer DE, Smith RD. Isotopic effect on ion mobility and separation of isotopomers by high-field ion mobility spectrometry. Anal Chem. 2010.  https://doi.org/10.1021/ac101992d.
  42. 42.
    Kaszycki JL, Bowman AP, Shvartsburg AA. Ion mobility separation of peptide isotopomers. J Am Soc Mass Spectrom. 2016.  https://doi.org/10.1007/s13361-016-1367-3.
  43. 43.
    Buryakov IA, Krylov EV, Nazarov EG, Rasulev UK. A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field. Int J Mass Spectrom Ion Process. 1993.  https://doi.org/10.1016/0168-1176(93)87062-W.
  44. 44.
    Langejuergen J, Allers M, Oermann J, Kirk AT, Zimmermann S. High kinetic energy ion mobility spectrometer: quantitative analysis of gas mixtures with ion mobility spectrometry. Anal Chem. 2014.  https://doi.org/10.1021/ac5011662.
  45. 45.
    Langejuergen J, Allers M, Oermann J, Kirk AT, Zimmermann S. Quantitative detection of benzene in toluene- and xylene-rich atmospheres using high-kinetic-energy ion mobility spectrometry (IMS). Anal Chem. 2014.  https://doi.org/10.1021/ac5034243.
  46. 46.
    Kirk AT, Grube D, Kobelt T, Wendt C, Zimmermann S. A high resolution high kinetic energy ion mobility spectrometer based on a low-discrimination tri-state ion shutter. Anal Chem. 2018.  https://doi.org/10.1021/acs.analchem.7b04586.
  47. 47.
    Shvartsburg AA. Differential mobility spectrometry - FAIMS and beyond Boca Raton, Fla. London: CRC; Taylor & Francis [distributor]; 2008.CrossRefGoogle Scholar
  48. 48.
    Schneider BB, Nazarov EG, Londry F, Vouros P, Covey TR. Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications. Mass Spectrometry Review. 2015.  https://doi.org/10.1002/mas.21453.
  49. 49.
    Nič M, Jirát J, Košata B, Jenkins A, McNaught A. IUPAC Compendium of Chemical Terminology Research Triagle Park. Zurich: NC: IUPAC; 2009.Google Scholar
  50. 50.
    Dodds JN, May JC, McLean JA. Correlating resolving power, resolution, and collision cross section - unifying cross-platform assessment of separation efficiency in ion mobility spectrometry. Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.7b02827.
  51. 51.
    Ungethüm B, Walte A, Münchmeyer W, Matz G. Comparative measurements of toxic industrial compounds with a differential mobility spectrometer and a time of flight ion mobility spectrometer. Int J Ion Mobil Spec. 2009.  https://doi.org/10.1007/s12127-009-0028-7.
  52. 52.
    Shvartsburg AA, Smith RD. Ultrahigh-resolution differential ion mobility spectrometry using extended separation times. 2011.  https://doi.org/10.1021/ac102689p.
  53. 53.
    Kirk AT, Raddatz C-R, Zimmermann S. Separation of isotopologues in ultra-high-resolution ion mobility spectrometry. Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.6b03300.
  54. 54.
    Kirk AT, Bakes K, Zimmermann S. A universal relationship between optimum drift voltage and resolving power. Int J Ion Mobil Spec. 2017.  https://doi.org/10.1007/s12127-017-0219-6.
  55. 55.
    Kirk AT, Zimmermann S. Pushing a compact 15 cm long ultra-high resolution drift tube ion mobility spectrometer with R = 250 to R = 425 using peak deconvolution. Int. J. Ion Mobil. Spec. 2015.  https://doi.org/10.1007/s12127-015-0166-z.
  56. 56.
    Srebalus CA, Li J, Marshall WS, Clemmer DE. Gas-phase separations of electrosprayed peptide libraries. Anal Chem. 1999.  https://doi.org/10.1021/ac9903757.
  57. 57.
    Wu C, Siems WF, Asbury GR, Hill HH. Electrospray ionization high-resolution ion mobility spectrometry-mass spectrometry. 1998.  https://doi.org/10.1021/ac980414z.
  58. 58.
    Kemper PR, Dupuis NF, Bowers MT. A new, higher resolution, ion mobility mass spectrometer. Int J Mass Spectrom. 2009.  https://doi.org/10.1016/j.ijms.2009.01.012.
  59. 59.
    Glaskin RS, Ewing MA, Clemmer DE. Ion trapping for ion mobility spectrometry measurements in a cyclical drift tube. Anal Chem. 2013.  https://doi.org/10.1021/ac4015066.
  60. 60.
    Deng L, Webb IK, Garimella SVB, Hamid AM, Zheng X, Norheim RV, et al. Serpentine ultra-long path with extended routing (SUPER) high resolution traveling wave ion mobility-MS using structures for lossless ion manipulations. Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.7b00185.
  61. 61.
    Giles K, Ujma J, Wildgoose JL, Green M, Richardson K, Langridge D, et al. Design and Performance of a second-generation cyclic ion mobility enabled Q-TOF. In: ASMS Conference on Mass Spectrometry and Allied Topics; 2017.Google Scholar
  62. 62.
    Adams KJ, Montero D, Aga D, Fernandez-Lima F. Isomer separation of polybrominated diphenyl ether metabolites using nanoESI-TIMS-MS. Int. J. Ion Mobil. Spec. 2016.  https://doi.org/10.1007/s12127-016-0198-z.
  63. 63.
    Ridgeway ME, Silveira JA, Meier JE, Park MA. Microheterogeneity within conformational states of ubiquitin revealed by high resolution trapped ion mobility spectrometry. Analyst. 2015.  https://doi.org/10.1039/C5AN00841G.
  64. 64.
    Michelmann K, Silveira JA, Ridgeway ME, Park MA. Fundamentals of trapped ion mobility spectrometry. J Am Soc Mass Spectrom. 2015.  https://doi.org/10.1007/s13361-014-0999-4.
  65. 65.
    Shvartsburg AA, Seim TA, Danielson WF, Norheim R, Moore RJ, Anderson GA, et al. High-definition differential ion mobility spectrometry with resolving power up to 500. J Am Soc Mass Spectrom. 2013.  https://doi.org/10.1007/s13361-012-0517-5.
  66. 66.
    Tyndall AM, Powell CF. The mobility of ions in pure gases. Proc R Soc A. 1930.  https://doi.org/10.1098/rspa.1930.0149.
  67. 67.
    Bradbury NE, Nielsen RA. Absolute values of the electron mobility in hydrogen. Phys Rev. 1936.  https://doi.org/10.1103/PhysRev.49.388.
  68. 68.
    Cohen MJ, Karasek FW. Plasma chromatography --a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci. 1970.  https://doi.org/10.1093/chromsci/8.6.330.
  69. 69.
    Karasek FW, Cohen MJ, Carroll DI. Trace studies of alcohols in the plasma chromatograph--mass spectrometer. J Chromatogr Sci. 1971.  https://doi.org/10.1093/chromsci/9.7.390.
  70. 70.
    Kwasnik M, Fuhrer K, Gonin M, Barbeau K, Fernandez FM. Performance, resolving power, and radial ion distributions of a prototype nanoelectrospray ionization resistive glass atmospheric pressure ion mobility spectrometer. Anal Chem. 2007.  https://doi.org/10.1021/ac071226o.
  71. 71.
    Kaplan K, Graf S, Tanner C, Gonin M, Fuhrer K, Knochenmuss R, et al. Resistive glass IM-TOFMS. Anal Chem. 2010.  https://doi.org/10.1021/ac1017259.
  72. 72.
    Pfeifer KB, Rohde SB, Peterson KA, Rumpf AN. Development of rolled miniature drift tubes using low temperature co-fired ceramics (LTCC). Int J Ion Mobil Spec. 2004;7(2):52–8.Google Scholar
  73. 73.
    Bohnhorst A, Kirk AT, Zimmermann S. Simulation aided design of a low cost ion mobility spectrometer based on printed circuit boards. Int J Ion Mobil Spec. 2016.  https://doi.org/10.1007/s12127-016-0202-7.
  74. 74.
    Reinecke T, Clowers BH. Implementation of a flexible, open-source platform for ion mobility spectrometry. HardwareX. 2018.  https://doi.org/10.1016/j.ohx.2018.e00030.
  75. 75.
    Hollerbach A, Baird Z, Cooks RG. Ion separation in air using a 3D printed ion mobility spectrometer. Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.7b00469.
  76. 76.
    Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE. Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal Chem. 1998.  https://doi.org/10.1021/ac980059c.
  77. 77.
    Henderson SC, Valentine SJ, Counterman AE, Clemmer DE. ESI/ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. Anal Chem. 1999.  https://doi.org/10.1021/ac9809175.
  78. 78.
    Knorr FJ, Eatherton RL, Siems WF, Hill HH. Fourier transform ion mobility spectrometry. Anal Chem. 1985.  https://doi.org/10.1021/ac50001a018.
  79. 79.
    Szumlas AW, Ray SJ, Hieftje GM. Hadamard transform ion mobility spectrometry. Anal Chem. 2006.  https://doi.org/10.1021/ac051743b.
  80. 80.
    Clowers BH, Siems WF, Hill HH, Massick SM. Hadamard transform ion mobility spectrometry. Anal Chem. 2006.  https://doi.org/10.1021/ac050615k.
  81. 81.
    Clowers BH, Siems WF, Yu Z, Davis AL. A two-phase approach to fourier transform ion mobility time-of-flight mass spectrometry. Analyst. 2015.  https://doi.org/10.1039/c5an00941c.
  82. 82.
    Davis AL, Liu W, Siems WF, Clowers BH. Correlation ion mobility spectrometry. Analyst. 2017.  https://doi.org/10.1039/C6AN02249A.
  83. 83.
    McGann WJ, Jenkins A, Ribiero K, Napoli J. New high-efficiency ion trap mobility detection system for narcotics and explosives. SPIE Proc. 1993.  https://doi.org/10.1117/12.171280.
  84. 84.
    Kirk AT, Zimmermann S. Bradbury-Nielsen vs. field switching shutters for high resolution drift tube ion mobility spectrometers. Int J Ion Mobil Spec. 2014.  https://doi.org/10.1007/s12127-014-0153-9.
  85. 85.
    Clowers BH, Ibrahim YM, Prior DC, Danielson WF, Belov ME, Smith RD. Enhanced ion utilization efficiency using an electrodynamic ion funnel trap as an injection mechanism for ion mobility spectrometry. Anal Chem. 2008.  https://doi.org/10.1021/ac701648p.
  86. 86.
    Karasek FW, Kane DM. Effect of oxygen on response of the electron-capture detector. Anal Chem. 1973.  https://doi.org/10.1021/ac60325a016.
  87. 87.
    Jafari MT. Low-temperature plasma ionization ion mobility spectrometry. Anal Chem. 2011.  https://doi.org/10.1021/ac1022937.
  88. 88.
    Tabrizchi M, Shamlouei HR. Relative transmission of different ions through shutter grid. Int J Mass Spectrom. 2010.  https://doi.org/10.1016/j.ijms.2010.01.011.
  89. 89.
    Chen C, Chen H, Li H. Pushing the resolving power of Tyndall-Powell gate ion mobility spectrometry over 100 with no sensitivity loss for multiple ion species. Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.7b03629.
  90. 90.
    Crawford CL, Hauck BC, Tufariello JA, Harden CS, McHugh V, Siems WF, et al. Accurate and reproducible ion mobility measurements for chemical standard evaluation. Talanta. 2012.  https://doi.org/10.1016/j.talanta.2012.09.003.
  91. 91.
    Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH. Construction and evaluation of a hermetically sealed accurate ion mobility instrument. Int J Ion Mobil Spec. 2017.  https://doi.org/10.1007/s12127-017-0224-9.
  92. 92.
    Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH. High accuracy ion mobility spectrometry for instrument calibration. Anal Chem. 2018.  https://doi.org/10.1021/acs.analchem.7b04987.
  93. 93.
    Rokushika S, Hatano H, Baim MA, Hill HH. Resolution measurement for ion mobility spectrometry. Anal Chem. 1985.  https://doi.org/10.1021/ac00286a023.
  94. 94.
    Watts P, Wilders A. On the resolution obtainable in practical ion mobility systems. Int J Mass Spectrom Ion Process. 1992.  https://doi.org/10.1016/0168-1176(92)80003-J.
  95. 95.
    Revercomb HE, Mason EA. Theory of plasma chromatography/gaseous electrophoresis. Review Anal Chem. 1975.  https://doi.org/10.1021/ac60357a043.
  96. 96.
    Kirk AT, Allers M, Cochems P, Langejuergen J, Zimmermann S. A compact high resolution ion mobility spectrometer for fast trace gas analysis. Analyst. 2013.  https://doi.org/10.1039/c3an00231d.
  97. 97.
    Siems WF, Wu C, Tarver EE, Hill, Herbert H Jr, Larsen PR, et al. Measuring the resolving power of ion mobility spectrometers. Anal Chem. 1994.  https://doi.org/10.1021/ac00095a014.
  98. 98.
    Kanu AB, Gribb MM, Hill HH. Predicting optimal resolving power for ambient pressure ion mobility spectrometry. Anal Chem. 2008.  https://doi.org/10.1021/ac8008143.
  99. 99.
    Kirk AT, Zimmermann S. An analytical model for the optimum drift voltage of drift tube ion mobility spectrometers with respect to resolving power and detection limits. Int. J. Ion Mobil. Spec. 2015.  https://doi.org/10.1007/s12127-015-0176-x.
  100. 100.
    Steiner WE, Clowers BH, Fuhrer K, Gonin M, Matz LM, Siems WF, et al. Electrospray ionization with ambient pressure ion mobility separation and mass analysis by orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2001.  https://doi.org/10.1002/rcm.495.
  101. 101.
    Sabo M, Páleník J, Kučera M, Han H, Wang H, Chu Y, et al. Atmospheric pressure corona discharge ionisation and ion mobility spectrometry/mass spectrometry study of the negative corona discharge in high purity oxygen and oxygen/nitrogen mixtures. Int J Mass Spectrom. 2010.  https://doi.org/10.1016/j.ijms.2010.03.004.
  102. 102.
    Allers M, Timoumi L, Kirk AT, Schlottmann F, Zimmermann S. Coupling of a high-resolution ambient pressure drift tube ion mobility spectrometer to a commercial time-of-flight mass spectrometer. J Am Soc Mass Spectrom. 2018.  https://doi.org/10.1007/s13361-018-2045-4.
  103. 103.
    Dugourd P, Hudgins RR, Clemmer DE, Jarrold MF. High-resolution ion mobility measurements. Rev. Sci. Instrum. 1997.  https://doi.org/10.1063/1.1147873.
  104. 104.
    Merenbloom SI, Koeniger SL, Valentine SJ, Plasencia MD, Clemmer DE. IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragment ions. Anal Chem. 2006.  https://doi.org/10.1021/ac052208e.
  105. 105.
    Tolmachev AV, Kim T, Udseth HR, Smith RD, Bailey TH, Futrell JH. Simulation-based optimization of the electrodynamic ion funnel for high sensitivity electrospray ionization mass spectrometry. Int J Mass Spectrom. 2000.  https://doi.org/10.1016/S1387-3806(00)00265-7.
  106. 106.
    Page JS, Tolmachev AV, Tang K, Smith RD. Theoretical and experimental evaluation of the low m/z transmission of an electrodynamic ion funnel. J Am Soc Mass Spectrom. 2006.  https://doi.org/10.1016/j.jasms.2005.12.013.
  107. 107.
    Merenbloom SI, Glaskin RS, Henson ZB, Clemmer DE. High-resolution ion cyclotron mobility spectrometry. 2009.  https://doi.org/10.1021/ac801880a.
  108. 108.
    Glaskin RS, Valentine SJ, Clemmer DE. A scanning frequency mode for ion cyclotron mobility spectrometry. 2010.  https://doi.org/10.1021/ac1017474.
  109. 109.
    Kurulugama RT, Nachtigall FM, Lee S, Valentine SJ, Clemmer DE. Overtone mobility spectrometry: part 1. Experimental observations. J Am Soc Mass Spectrom. 2009.  https://doi.org/10.1016/j.jasms.2008.11.022.
  110. 110.
    Valentine SJ, Stokes ST, Kurulugama RT, Nachtigall FM, Clemmer DE. Overtone mobility spectrometry: part 2. Theoretical considerations of resolving power. J Am Soc Mass Spectrom. 2009.  https://doi.org/10.1016/j.jasms.2009.01.001.
  111. 111.
    Valentine SJ, Kurulugama RT, Clemmer DE. Overtone mobility spectrometry: part 3. On the origin of peaks. J Am Soc Mass Spectrom. 2011.  https://doi.org/10.1007/s13361-011-0087-y.
  112. 112.
    Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom: RCM. 2004.  https://doi.org/10.1002/rcm.1641.
  113. 113.
    Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, et al. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom. 2007.  https://doi.org/10.1016/j.ijms.2006.07.021.
  114. 114.
    Giles K, Williams JP, Campuzano I. Enhancements in travelling wave ion mobility resolution. Rapid Commun Mass Spectrom: RCM. 2011.  https://doi.org/10.1002/rcm.5013.
  115. 115.
    Gerlich D. Inhomogeneous RF fields: a versatile tool for the study of processes with slow ions. In: Ng CY, Baer M, editors. State-selected and state-to-state ion-molecule reaction dynamics. New York: J. Wiley; 1992.Google Scholar
  116. 116.
    Shaffer SA, Tolmachev A, Prior DC, Anderson GA, Udseth HR, Smith RD. Characterization of an improved electrodynamic ion funnel interface for electrospray ionization mass spectrometry. Anal Chem. 1999.  https://doi.org/10.1021/ac990346w.
  117. 117.
    Shvartsburg AA, Smith RD. Fundamentals of traveling wave ion mobility spectrometry. Anal Chem. 2008.  https://doi.org/10.1021/ac8016295.
  118. 118.
    Gelb AS, Jarratt RE, Huang Y, Dodds ED. A study of calibrant selection in measurement of carbohydrate and peptide ion-neutral collision cross sections by traveling wave ion mobility spectrometry. Anal Chem. 2014.  https://doi.org/10.1021/ac503379e.
  119. 119.
    Hines KM, May JC, McLean JA, Xu L. Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal Chem. 2016.  https://doi.org/10.1021/acs.analchem.6b01728.
  120. 120.
    Morsa D, Gabelica V, de Pauw E. Effective temperature of ions in traveling wave ion mobility spectrometry. Anal Chem. 2011.  https://doi.org/10.1021/ac201509p.
  121. 121.
    Merenbloom SI, Flick TG, Williams ER. How hot are your ions in TWAVE ion mobility spectrometry? J Am Soc Mass Spectrom. 2012.  https://doi.org/10.1007/s13361-011-0313-7.
  122. 122.
    Morsa D, Gabelica V, de Pauw E. Fragmentation and isomerization due to field heating in traveling wave ion mobility spectrometry. J Am Soc Mass Spectrom. 2014.  https://doi.org/10.1007/s13361-014-0909-9.
  123. 123.
    Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem. 2010.  https://doi.org/10.1021/ac1022953.
  124. 124.
    Michaelevski I, Eisenstein M, Sharon M. Gas-phase compaction and unfolding of protein structures. Anal Chem. 2010.  https://doi.org/10.1021/ac1021419.
  125. 125.
    Zhong Y, Hyung S-J, Ruotolo BT. Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions. Analyst. 2011.  https://doi.org/10.1039/c0an00987c.
  126. 126.
    Giles K, Wildgoose JL, Pringle SD, Garside J, Carney P, Nixon P, et al. Design and utility of a multi-pass cyclic ion mobility separator. In: ASMS Conference on Mass Spectrometry and Allied Topics; 2014.Google Scholar
  127. 127.
    Giles K, Wildgoose JL, Pringle SD, Langridge DJ, Nixon P, Garside J, et al. Characterising a T-wave enabled multi-pass cyclic ion mobility separator. In: ASMS Conference on Mass Spectrometry and Allied Topics; 2015.Google Scholar
  128. 128.
    Tolmachev AV, Webb IK, Ibrahim YM, Garimella, Sandilya VB, Zhang X, et al. Characterization of ion dynamics in structures for lossless ion manipulations. Anal Chem. 2014.  https://doi.org/10.1021/ac502054p.
  129. 129.
    Garimella SVB, Ibrahim YM, Webb IK, Tolmachev AV, Zhang X, Prost SA, et al. Simulation of electric potentials and ion motion in planar electrode structures for lossless ion manipulations (SLIM). J Am Soc Mass Spectrom. 2014.  https://doi.org/10.1007/s13361-014-0976-y.
  130. 130.
    Webb IK, Garimella, Sandilya VB, Tolmachev AV, Chen T-C, Zhang X, et al. Experimental evaluation and optimization of structures for lossless ion manipulations for ion mobility spectrometry with time-of-flight mass spectrometry. Anal Chem. 2014.  https://doi.org/10.1021/ac502055e.
  131. 131.
    Webb IK, Garimella, Sandilya VB, Tolmachev AV, Chen T-C, Zhang X, et al. Mobility-resolved ion selection in uniform drift field ion mobility spectrometry/mass spectrometry: dynamic switching in structures for lossless ion manipulations. Anal Chem. 2014.  https://doi.org/10.1021/ac502139e.
  132. 132.
    Hamid AM, Ibrahim YM, Garimella, Sandilya VB, Webb IK, Deng L, et al. Characterization of traveling wave ion mobility separations in structures for lossless ion manipulations. Anal Chem. 2015.  https://doi.org/10.1021/acs.analchem.5b02481.
  133. 133.
    Zhang X, Garimella, Sandilya VB, Prost SA, Webb IK, Chen T-C, et al. Ion trapping, storage, and ejection in structures for lossless ion manipulations. Anal Chem. 2015.  https://doi.org/10.1021/acs.analchem.5b00214.
  134. 134.
    Garimella SVB, Ibrahim YM, Webb IK, Ipsen AB, Chen T-C, Tolmachev AV, et al. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch. Analyst. 2015.  https://doi.org/10.1039/c5an00844a.
  135. 135.
    Ibrahim YM, Hamid AM, Cox JT, Garimella SVB, Smith RD. Ion elevators and escalators in multi-level structures for lossless ion manipulations (SLIM). Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.6b04500.
  136. 136.
    Hamid AM, Garimella SVB, Ibrahim YM, Deng L, Zheng X, Webb IK, et al. Achieving high resolution ion mobility separations using traveling waves in compact multiturn structures for lossless ion manipulations. Anal Chem. 2016.  https://doi.org/10.1021/acs.analchem.6b01914.
  137. 137.
    Deng L, Ibrahim YM, Hamid AM, Garimella SVB, Webb IK, Zheng X, et al. Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module. Anal Chem. 2016.  https://doi.org/10.1021/acs.analchem.6b01915.
  138. 138.
    Deng L, Ibrahim YM, Garimella SVB, Webb IK, Hamid AM, Norheim RV, et al. Greatly increasing trapped ion populations for mobility separations using traveling waves in structures for lossless ion manipulations. Anal Chem. 2016.  https://doi.org/10.1021/acs.analchem.6b02678.
  139. 139.
    Deng L, Garimella SVB, Hamid AM, Webb IK, Attah IK, Norheim RV, et al. Compression ratio ion mobility programming (CRIMP) accumulation and compression of billions of ions for ion mobility-mass spectrometry using traveling waves in structures for lossless ion manipulations (SLIM). Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.7b00189.
  140. 140.
    Garimella SVB, Hamid AM, Deng L, Ibrahim YM, Webb IK, Baker ES, et al. Squeezing of ion populations and peaks in traveling wave ion mobility separations and structures for lossless ion manipulations using compression ratio ion mobility programming. Anal Chem. 2016.  https://doi.org/10.1021/acs.analchem.6b03660.
  141. 141.
    McKenzie-Coe A, Debord JD, Ridgeway M, Park M, Eiceman GA, Fernandez-Lima F. Lifetimes and stabilities of familiar explosive molecular adduct complexes during ion mobility measurements. Analyst. 2015.  https://doi.org/10.1039/c5an00527b.
  142. 142.
    Jurado-Campos N, Garrido-Delgado R, Martínez-Haya B, Eiceman GA, Arce L. Stability of proton-bound clusters of alkyl alcohols, aldehydes and ketones in ion mobility spectrometry. Talanta. 2018.  https://doi.org/10.1016/j.talanta.2018.03.030.
  143. 143.
    Ewing RG, Eiceman GA, Harden CS, Stone JA. The kinetics of the decompositions of the proton bound dimers of 1,4-dimethylpyridine and dimethyl methylphosphonate from atmospheric pressure ion mobility spectra. Int J Mass Spectrom. 2006.  https://doi.org/10.1016/j.ijms.2006.04.003.
  144. 144.
    Rajapakse MY, Stone JA, Eiceman GA. Decomposition kinetics of nitroglycerine·Cl(-)(g) in air at ambient pressure with a tandem ion mobility spectrometer. J Phys Chem A. 2014.  https://doi.org/10.1021/jp412444b.
  145. 145.
    Rajapakse RMMY, Stone JA, Eiceman GA. An ion mobility and theoretical study of the thermal decomposition of the adduct formed between ethylene glycol dinitrate and chloride. Int J Mass Spectrom. 2014.  https://doi.org/10.1016/j.ijms.2014.07.039.
  146. 146.
    Loboda A. Novel ion mobility setup combined with collision cell and time-of-flight mass spectrometer. J Am Soc Mass Spectrom. 2006.  https://doi.org/10.1016/j.jasms.2006.01.013.
  147. 147.
    Fernandez-Lima F, Kaplan DA, Suetering J, Park MA. Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobil Spectrom. 2011.  https://doi.org/10.1007/s12127-011-0067-8.
  148. 148.
    Fernandez-Lima FA, Kaplan DA, Park MA. Note: Integration of trapped ion mobility spectrometry with mass spectrometry. Rev Sci Instrum. 2011.  https://doi.org/10.1063/1.3665933.
  149. 149.
    Ridgeway ME, Lubeck M, Jordens J, Mann M, Park MA. Trapped ion mobility spectrometry - a short review. Int J Mass Spectrom. 2018.  https://doi.org/10.1016/j.ijms.2018.01.006.
  150. 150.
    Larriba-Andaluz C, Chen X, Nahin M, Wu T, Fukushima N. Analysis of ion motion and diffusion confinement in inverted drift tubes and trapped ion mobility spectrometry devices. Anal Chem. 2018.  https://doi.org/10.1021/acs.analchem.8b03930.
  151. 151.
    Bleiholder C. Towards measuring ion mobilities in non-stationary gases and non-uniform and dynamic electric fields (I). Transport equation. Int J Mass Spectrom. 2016.  https://doi.org/10.1016/j.ijms.2016.01.003.
  152. 152.
    Chai M, Young MN, Liu FC, Bleiholder C. A transferable, sample-independent calibration procedure for trapped ion mobility spectrometry (TIMS). Anal Chem. 2018.  https://doi.org/10.1021/acs.analchem.8b01326.
  153. 153.
    Haler JRN, Kune C, Massonnet P, Comby-Zerbino C, Jordens J, Honing M, et al. Comprehensive ion mobility calibration: poly(ethylene oxide) polymer calibrants and general strategies. Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.7b02564.
  154. 154.
    Liu FC, Kirk SR, Bleiholder C. On the structural denaturation of biological analytes in trapped ion mobility spectrometry – mass spectrometry. Analyst. 2016.  https://doi.org/10.1039/C5AN02399H.
  155. 155.
    Silveira JA, Michelmann K, Ridgeway ME, Park MA. Fundamentals of trapped ion mobility spectrometry part II - fluid dynamics. J Am Soc Mass Spectrom. 2016.  https://doi.org/10.1007/s13361-015-1310-z.
  156. 156.
    Benigni P, Marin R, Molano-Arevalo JC, Garabedian A, Wolff JJ, Ridgeway ME, et al. Towards the analysis of high molecular weight proteins and protein complexes using TIMS-MS. Int J Ion Mobil Spec. 2016.  https://doi.org/10.1007/s12127-016-0201-8.
  157. 157.
    Silveira JA, Ridgeway ME, Laukien F, Mann M, Park MA. Parallel accumulation for 100% duty cycle trapped ion mobility-mass spectrometry. Int J Mass Spectrom. 2016.  https://doi.org/10.1016/j.ijms.2016.03.004.
  158. 158.
    Silveira JA, Danielson W, Ridgeway ME, Park MA. Altering the mobility-time continuum - nonlinear scan functions for targeted high resolution trapped ion mobility-mass spectrometry. Int J Ion Mobil Spec. 2016.  https://doi.org/10.1007/s12127-016-0196-1.
  159. 159.
    Benigni P, Porter J, Ridgeway ME, Park MA, Fernandez-Lima F. Increasing analytical separation and duty cycle with nonlinear analytical mobility scan functions in TIMS-FT-ICR MS. Anal Chem. 2018.  https://doi.org/10.1021/acs.analchem.7b04053.
  160. 160.
    Benigni P, Fernandez-Lima F. Oversampling selective accumulation trapped ion mobility spectrometry coupled to FT-ICR MS: fundamentals and applications. Anal Chem. 2016.  https://doi.org/10.1021/acs.analchem.6b01946.
  161. 161.
    Nazarov EG. A journey into DMS/FAIMS technology. Int. J. Ion Mobil. Spec. 2012.  https://doi.org/10.1007/s12127-012-0112-2.
  162. 162.
    Buryakov IA, Krylov EV, Makas AL, Nazarov EG, Pervukhin VV, Rasulev UK. Separation of ions according to their mobility in a strong alternating current electric field. Sov Tech Phys Lett. 1991;17(6):446–7.Google Scholar
  163. 163.
    Shvartsburg AA, Li F, Tang K, Smith RD. Distortion of ion structures by field asymmetric waveform ion mobility spectrometry. Anal Chem. 2007.  https://doi.org/10.1021/ac061306c.
  164. 164.
    Robinson EW, Shvartsburg AA, Tang K, Smith RD. Control of ion distortion in field asymmetric waveform ion mobility spectrometry via variation of dispersion field and gas temperature. Anal Chem. 2008.  https://doi.org/10.1021/ac800655d.
  165. 165.
    Krylov EV, Coy SL, Nazarov EG. Temperature effects in differential mobility spectrometry. Int J Mass Spectrom. 2009.  https://doi.org/10.1016/j.ijms.2008.10.025.
  166. 166.
    Nazarov EG, Coy SL, Krylov EV, Miller RA, Eiceman GA. Pressure effects in differential mobility spectrometry. 2006.  https://doi.org/10.1021/ac061092z.
  167. 167.
    Shvartsburg AA, Haris A, Andrzejewski R, Entwistle A, Giles R. Differential ion mobility separations in the low-pressure regime. Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.7b03925.
  168. 168.
    Viehland LA, Guevremont R, Purves RW, Barnett DA. Comparison of high-field ion mobility obtained from drift tubes and a FAIMS apparatus. Int J Mass Spectrom. 2000.  https://doi.org/10.1016/S1387-3806(99)00224-9.
  169. 169.
    Nazarov EG, Langejuergen J, Kirk AT, Allers M, Oermann J, Zimmermann S. Comparison of ion alpha parameters obtained from DMS and HiKE-IMS data. In: International Conference on Ion Mobility Spectrometry; 2015.Google Scholar
  170. 170.
    Nazarov EG, Anderson AG, Krylov EV, Coy SL, Miller RA, Burchfield D, et al. Miniature DMS-IMS detector for enhanced revolving power. In: Proceedings of 16th International Conference on Ion Mobility Spectrometry; 2007.Google Scholar
  171. 171.
    Shvartsburg AA, Tang K, Smith RD. Two-dimensional ion mobility analyses of proteins and peptides. Methods Mol Biol (Clifton, N.J.). 2009.  https://doi.org/10.1007/978-1-59745-493-3_26.
  172. 172.
    Krylov EV, Nazarov EG, Miller RA. Differential mobility spectrometer: model of operation. Int J Mass Spectrom. 2007.  https://doi.org/10.1016/j.ijms.2007.07.003.
  173. 173.
    Shvartsburg AA, Smith RD, Wilks A, Koehl A, Ruiz-Alonso D, Boyle B. Ultrafast differential ion mobility spectrometry at extreme electric fields in multichannel microchips. 2009.  https://doi.org/10.1021/ac900892u.
  174. 174.
    Krylov E, Nazarov EG, Miller RA, Tadjikov B, Eiceman GA. Field dependence of mobilities for gas-phase-protonated monomers and proton-bound dimers of ketones by planar field asymmetric waveform ion mobility spectrometer (PFAIMS). J Phys Chem A. 2002.  https://doi.org/10.1021/jp020009i.
  175. 175.
    Santiago BG, Harris RA, Isenberg SL, Glish GL. Resolving powers of >7900 using linked scans - how well does resolving power describe the separation capability of differential ion mobility spectrometry. Analyst. 2015.  https://doi.org/10.1039/C5AN00845J.
  176. 176.
    Shvartsburg AA, Smith RD. Accelerated high-resolution differential ion mobility separations using hydrogen. Anal Chem. 2011.  https://doi.org/10.1021/ac202386w.
  177. 177.
    Shvartsburg AA, Danielson WF, Smith RD. High-resolution differential ion mobility separations using helium-rich gases. Anal Chem. 2010.  https://doi.org/10.1021/ac902852a.
  178. 178.
    Shvartsburg AA, Smith RD. Separation of protein conformers by differential ion mobility in hydrogen-rich gases. Anal Chem. 2013.  https://doi.org/10.1021/ac4015963.
  179. 179.
    Shvartsburg AA, Ibrahim YM, Smith RD. Differential ion mobility separations in up to 100% helium using microchips. J Am Soc Mass Spectrom. 2014.  https://doi.org/10.1007/s13361-013-0797-4.
  180. 180.
    Krylova N, Krylov E, Eiceman GA, Stone JA. Effect of moisture on the field dependence of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. J Phys Chem A. 2003.  https://doi.org/10.1021/jp0221136.
  181. 181.
    Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG. Chemical effects in the separation process of a differential mobility/mass spectrometer system. 2010.  https://doi.org/10.1021/ac902571u.
  182. 182.
    Blagojevic V, Chramow A, Schneider BB, Covey TR, Bohme DK. Differential mobility spectrometry of isomeric protonated dipeptides: modifier and field effects on ion mobility and stability. Anal Chem. 2011.  https://doi.org/10.1021/ac200100s.
  183. 183.
    Shvartsburg AA, Smith RD. Optimum waveforms for differential ion mobility spectrometry (FAIMS). J Am Soc Mass Spectrom. 2008.  https://doi.org/10.1016/j.jasms.2008.05.008.
  184. 184.
    Krylov EV, Coy SL, Vandermey J, Schneider BB, Covey TR, Nazarov EG. Selection and generation of waveforms for differential mobility spectrometry. Rev Sci Instrum. 2010.  https://doi.org/10.1063/1.3284507.
  185. 185.
    Schneider BB, Londry F, Nazarov EG, Kang Y, Covey TR. Maximizing ion transmission in differential mobility spectrometry. J Am Soc Mass Spectrom. 2017.  https://doi.org/10.1007/s13361-017-1727-7.
  186. 186.
    Baird MA, Anderson GA, Shliaha PV, Jensen ON, Shvartsburg AA. Differential ion mobility separations/mass spectrometry with high resolution in both dimensions. Anal Chem. 2018.  https://doi.org/10.1021/acs.analchem.8b04518.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement TechnologyLeibniz Universität HannoverHannoverGermany

Personalised recommendations