Advertisement

Characterization of the chemical composition of Drimia numidica plant parts using high-resolution mass spectrometry: study of their total phenolic content and antioxidant activity

  • Eleni Kakouri
  • Charalabos Kanakis
  • Panayiotis Trigas
  • Petros A. TarantilisEmail author
Research Paper

Abstract

Drimia species have been used since ancient times for their medicinal properties. Their bulbs are considered as the main source of secondary metabolites with biological activity but the chemical composition of the other plant parts has not yet been considered. The aim of this study is to contribute to the existing knowledge with new data on the total phenolic content, the antioxidant activity and the chemical profile of different parts of Drimia numidica. The total phenolic content was estimated by the Folin-Ciocalteu assay and the antioxidant activity with DPPH· and ABTS·+ reagents. The separation and the identification of the compounds were performed with liquid chromatography combined with time-of-flight high-resolution mass spectrometry (LC/Q-TOF/HRMS). The extract of leaves presented the highest phenolic content while the highest antioxidant activity was presented by the extract of flowers. Results of the chemical analysis verify the presence of bufadienolides and phenolic compounds.

Graphical abstract

Keywords

Drimia numidica LC/Q-TOF/HRMS Antioxidant activity Phenolic compounds Bufadienolides 

Notes

Acknowledgements

The authors want to thank Dr. Georgios Danezis for his valuable mentoring and support regarding the Folin-Ciocalteu validation experiments.

Compliance with ethical standards

This article does not contain any studies involving animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_1781_MOESM1_ESM.pdf (3.9 mb)
ESM 1 (PDF 3.92 mb)

References

  1. 1.
    Manning JC, Goldblatt P, Fay MF. A revised generic synopsis of Hyacinthaceae in sub-Saharan Africa, based on molecular evidence, including new combinations and the new tribe Pseudoprospereae. Edinburgh J Bot. 2004;60:533–68.Google Scholar
  2. 2.
    Strid A. Atlas of the Aegean flora. Part 1: Text & plates, Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Englera. 2015;(33):1–700.Google Scholar
  3. 3.
    Cowen DL. Squill in the 17th and 18th centuries. J Urban Health. 1974;(50):714–22.Google Scholar
  4. 4.
    Tobyn G, Denham A, Whitelegg M. The western herbal tradition: 2000 years of medicinal plant knowledge. Ist ed. London, UK: Singing Dragon; 2011.Google Scholar
  5. 5.
    Boscuk H, Özdogani M, Aykurt O, et al. Urginea maritima (L.) Baker (Liliaceae) extract induces more cytotoxicity than standard chemotherapeutics in the A549 non-small cell lung cancer (NSCLC) cell line. Turk J Med Sci. 2011;41:101–8.Google Scholar
  6. 6.
    Elghuol MM, Khalil KA, Zain MM, Said MS. Apoptosis inducer capacity of cardiotonic steroids of Urginea maritima extract on SH-SY5Y neuroblastoma cells, with less susceptibility among neuron-module cells. Am J Appl Sci. 2016;13:686–96.CrossRefGoogle Scholar
  7. 7.
    Sathiyamoorthy P, Lugasi-Evgi H, Schlesinger P, et al. Screening for cytotoxic and antimalarial activities in desert plants of the Negev and Bedouin market plant products. Pharm Biol. 1999;37:188–95.CrossRefGoogle Scholar
  8. 8.
    Shokeen P, Bala M, Tandona V. Evaluation of the activity of 16 medicinal plants against Neisseria gonorrhoeae. Int J Antimicrob Agents. 2009;33:86–91.CrossRefGoogle Scholar
  9. 9.
    Thatoi HN, Panda SK, Rath SK, Dutta SK. Antimicrobial activity and ethnomedicinal uses of some medicinal plants from Similipal Biosphere Reserve, Orissa. Asian J Plant Sci. 2008;7:260–7.CrossRefGoogle Scholar
  10. 10.
    Bucht H, EK J, Eliasch H, Thomasson B, Werkö L. The effect of a single intravenous dose of scillaren B on the pulmonary circulation and renal function in patients with rheumatic heart disease. Am Heart J. 1957;54:376–84.CrossRefGoogle Scholar
  11. 11.
    Chamberlain FL, Levy RL. Clinical study of a preparation of squill (urginin) in the treatment of myocardial insufficiency. Am Heart J. 1937;14:268–83.CrossRefGoogle Scholar
  12. 12.
    Dizaye K, Hamed K. Cardiovascular studies of white squill (Urginea Maritima) extract. Zanco J Med Sci. 2010;14.Google Scholar
  13. 13.
    Kamboj A, Rathour A, Kaur M. Bufadienolides and their utility: a review. Int J Pharm. 2013;(5):20–7.Google Scholar
  14. 14.
    Stoll A, Suter E, Kreis W, Bussemaker BB, Hofmann A. Den herzaktiven Substanzen der Meerzwiebel. Scillaren A Helv Chim Acta 1933;(16):703–733.Google Scholar
  15. 15.
    Krenn L, Kopp B. Bufadienolides from animal and plant sources. Phytochemistry. 1998;48:1–29.CrossRefGoogle Scholar
  16. 16.
    Fernandez M, Vega FA, Arrupe T, Renedo J. Monocotyledonae Liliceae: flavonoids of squill, Urginea maritima. Phytochemistry. 1971;(11):1534–5.Google Scholar
  17. 17.
    Euro+Med (2006-): Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/ [accessed 21/12/2018].
  18. 18.
    Dimopoulos P, Raus T, Bergmeier E, et al. Vascular plants of Greece: an annotated checklist. – Berlin: Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin; Athens: Hellenic Botanical Society. Englera. 2013;31:1–370.Google Scholar
  19. 19.
    Pyrzynska K, Pẹkal A. Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Anal Methods. 2013;5:4288–95.CrossRefGoogle Scholar
  20. 20.
    Knittel DN, Stintzing FC, Kammerer DR. Simultaneous determination of bufadienolides and phenolic compounds in sea squill (Drimia maritima (L.) Stearn) by HPLC-DAD-MSn as a means to differentiate individual plant parts and developmental stages. Anal Bioanal Chem. 2014;406:6035–50.CrossRefGoogle Scholar
  21. 21.
    Kopp B, Krenn L, Draxler M, Hoyer A, Terkola R, Vallaster P, et al. Bufadienolides from Urginea maritima from Egypt. Phytochemistry. 1996;42:513–22.CrossRefGoogle Scholar
  22. 22.
    Krenn L, Kopp B, Deim A, Robien W, Kubelka W. About the bufadienolide complex of red squill. Planta Med. 1994;60:63–9.CrossRefGoogle Scholar
  23. 23.
    Dagne E, Mammo W, Alemu M, Caser I. Two bufadienolides from Drimia altissima (Urginea altissima). Bull Chem Soc Ethiop. 1994;8(2):85–9.Google Scholar
  24. 24.
    Pohl T, Koorbanally C, Crouch NR, Mulholland DA. Bufadienolides from Drimia robusta & Urginea altissima (Hyacinthaceae). Phytochemistry. 2001;58:557–61.CrossRefGoogle Scholar
  25. 25.
    Krenn L, Ferth R, Robien W, Kopp B. Bufadienolides from Urginea maritima sensu strictu. Planta Med. 1991;57:560–5.CrossRefGoogle Scholar
  26. 26.
    Iizuka M, Warashina T, Noro T. Bufadienolides and a new lignan from the bulbs of Urginea maritima. Chem Pharm Bull. 2014;(9):282–6.Google Scholar
  27. 27.
    Lichti H, Niklaus P, Wartburg A. Zur Struktur der Scilliglaucosids. Helv Chim Acta. 1973;56(6):217.Google Scholar
  28. 28.
    Kopp B, Unterluggauer M, Robien W, Kubelka W. Bufadienolides from Urginea pancration. Planta Med. 1990;56(2):193–7.CrossRefGoogle Scholar
  29. 29.
    Verbiscar AJ, Jagjivanbhai P, Thomas FB, Schatz RA. Scilliroside and other scilla compounds in red squill. J Agric Food Chem. 1986;(6):973–9.Google Scholar
  30. 30.
    Krenn L, Jambrits M, Kopp B. Bufadienolides from Urginea hesperia. Planta Med. 1988;54(3):227–32.CrossRefGoogle Scholar
  31. 31.
    Kuhnert N, Jaiswal R, Matei MF, Sovdat T, Deshpande S. How to distinguish between feruloyl quinic acids and isoferuloyl quinic acids by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Sp. 2010; 15;24(11):1575–1582.Google Scholar
  32. 32.
    Ma YL, Li QM, Van den Heuvel H, Claeys M. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Commun Mass Spectrom. 1997;2:1357–64.CrossRefGoogle Scholar
  33. 33.
    Domon B, Costello C. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988;5:397–409.CrossRefGoogle Scholar
  34. 34.
    Benayad Z, Gómez-Cordovés C, Es-Safi NE. Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC-DAD-ESI/MS analysis. Int J Mol Sci. 2014;15(11):20668–85.CrossRefGoogle Scholar
  35. 35.
    Tsimogiannis D, Samiotaki M, Panayotou G, Oreopoulou V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules. 2007;12(3):593–606.CrossRefGoogle Scholar
  36. 36.
    Ye M, Guo DA. Analysis of bufadienolides in the Chinese drug ChanSu by high-performance liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Sp. 2005;19:1881–92.CrossRefGoogle Scholar
  37. 37.
    Ahuja S, Dong MV. Handbook of pharmaceutical analysis by HPLC. 1st ed. San Diego, CA: Academic press; 2005.Google Scholar
  38. 38.
    Mammadov R, Afacan AM, Demir DU, Görk C. Determination of antioxidant activities of different Urginea maritima (L.) Baker plant extracts. Iran J Chem Chem Eng. 2010;29:47–53.Google Scholar
  39. 39.
    Mazid M, Khan TA, Mohammad F. Role of secondary metabolites in defense mechanisms of plants. BLM. 2011;(3):232–49.Google Scholar
  40. 40.
    Food and Drug Administration. Guidance for industry: powder blends and finished dosage units—stratified in-process dosage unit sampling and assessment. In: Gad SC, editor. Pharmaceutical manufacturing handbook: regulations and quality. Hoboken:Wiley; 2003.Google Scholar
  41. 41.
    Little TA. Establishing acceptance criteria for analytical methods. BioPharm International 2016. http://www.biopharminternational.com/establishing-acceptance-criteria-analytical-methods. Accessed 20 Jan. 2019.
  42. 42.
    Thompson M, Ellison S, Fajgelg A, Willetts P, Wood R. Harmonized guidelines for the use of recovery information in analytical measurement. Pure Appl Chem. 1999;71(2):337–48.CrossRefGoogle Scholar
  43. 43.
    Arnao MB. Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol. 2000;11:419–21.CrossRefGoogle Scholar
  44. 44.
    Reichstein T, Weiss E. The sugars of the cardiac glycosides, Ed. L. Melville, R. Wolfrom, S. Tipson, Adv Carbohydr Chem 2008;(17):65–120.Google Scholar
  45. 45.
    Balogh MP. MS in practice. LC•GC Europe. 2009. http://www.chromatographyonline.com/lcgc-europe-12-01-2017. Accessed 20 Jan. 2019.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Eleni Kakouri
    • 1
  • Charalabos Kanakis
    • 1
  • Panayiotis Trigas
    • 2
  • Petros A. Tarantilis
    • 1
    Email author
  1. 1.Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and DevelopmentAgricultural University of AthensAthensGreece
  2. 2.Laboratory of Systematic Botany, Department of Crop ScienceAgricultural University of AthensAthensGreece

Personalised recommendations