Advertisement

Optical approaches for single-cell and subcellular analysis of GPCR–G protein signaling

  • Dinesh Kankanamge
  • Kasun Ratnayake
  • Kanishka Senarath
  • Mithila Tennakoon
  • Elise Harmon
  • Ajith KarunarathneEmail author
Review
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

G protein-coupled receptors (GPCRs), G proteins, and their signaling associates are major signal transducers that control the majority of cellular signaling and regulate key biological functions including immune, neurological, cardiovascular, and metabolic processes. These pathways are targeted by over one-third of drugs on the market; however, the current understanding of their function is limited and primarily derived from cell-destructive approaches providing an ensemble of static, multi-cell information about the status and composition of molecules. Spatiotemporal behavior of molecules involved is crucial to understanding in vivo cell behaviors both in health and disease, and the advent of genetically encoded fluorescence proteins and small fluorophore-based biosensors has facilitated the mapping of dynamic signaling in cells with subcellular acuity. Since we and others have developed optogenetic methods to regulate GPCR–G protein signaling in single cells and subcellular regions using dedicated wavelengths, the desire to develop and adopt optogenetically amenable assays to measure signaling has motivated us to take a broader look at the available optical tools and approaches compatible with measuring single-cell and subcellular GPCR–G protein signaling. Here we review such key optical approaches enabling the examination of GPCR, G protein, secondary messenger, and downstream molecules such as kinase and lipid signaling in living cells. The methods reviewed employ both fluorescence and bioluminescence detection. We not only further elaborate the underlying principles of these sensors but also discuss the experimental criteria and limitations to be considered during their use in single-cell and subcellular signal mapping.

Keywords

GPCR G protein Signal transduction Fluorescence FRET BRET Real-time assay Imaging Single-cell analysis Microscopy Translocation 

Notes

Funding information

This work is partially supported by the University of Toledo and National Institutes of Health–National Institute of General Medical Sciences (award number 1R15GM126455-01A1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Hanlon CD, Andrew DJ. Outside-in signaling–a brief review of GPCR signaling with a focus on the Drosophila GPCR family. J Cell Sci. 2015;128(19):3533–42.  https://doi.org/10.1242/jcs.175158.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3(9):639–50.  https://doi.org/10.1038/nrm908.CrossRefPubMedGoogle Scholar
  3. 3.
    Jastrzebska B. GPCR: G protein complexes–the fundamental signaling assembly. Amino Acids. 2013;45(6):1303–14.  https://doi.org/10.1007/s00726-013-1593-y.CrossRefPubMedGoogle Scholar
  4. 4.
    Hamm HE. The many faces of G protein signaling. J Biol Chem. 1998;273(2):669–72.  https://doi.org/10.1074/jbc.273.2.669.CrossRefPubMedGoogle Scholar
  5. 5.
    Johnston CA, Siderovski DP. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol Pharmacol. 2007;72(2):219–30.  https://doi.org/10.1124/mol.107.034348.CrossRefPubMedGoogle Scholar
  6. 6.
    Siripurapu P, Kankanamge D, Ratnayake K, Senarath K, Karunarathne A. Two independent but synchronized Gbetagamma subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration. J Biol Chem. 2017;292(42):17482–95.  https://doi.org/10.1074/jbc.M117.787838.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Senarath K, Payton JL, Kankanamge D, Siripurapu P, Tennakoon M, Karunarathne A. Ggamma identity dictates efficacy of Gbetagamma signaling and macrophage migration. J Biol Chem. 2018;293(8):2974–89.  https://doi.org/10.1074/jbc.RA117.000872.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    O'Neill PR, Karunarathne WK, Kalyanaraman V, Silvius JR, Gautam N. G-protein signaling leverages subunit-dependent membrane affinity to differentially control betagamma translocation to intracellular membranes. Proc Natl Acad Sci U S A. 2012;109(51):E3568–77.  https://doi.org/10.1073/pnas.1205345109.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Karunarathne WK, Giri L, Kalyanaraman V, Gautam N. Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proc Natl Acad Sci U S A. 2013;110(17):E1565–74.  https://doi.org/10.1073/pnas.1220697110.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fang Y, Kenakin T, Liu C. Editorial: orphan GPCRs as emerging drug targets. Front Pharmacol. 2015;6(295):295.  https://doi.org/10.3389/fphar.2015.00295.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16(12):829–42.  https://doi.org/10.1038/nrd.2017.178.CrossRefPubMedGoogle Scholar
  12. 12.
    Hu GM, Mai TL, Chen CM. Visualizing the GPCR network: classification and evolution. Sci Rep. 2017;7(1):15495.  https://doi.org/10.1038/s41598-017-15707-9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Alexander SP, Christopoulos A, Davenport AP, Kelly E, Marrion NV, Peters JA, et al. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br J Pharmacol. 2017;174(Suppl 1):S17–S129.  https://doi.org/10.1111/bph.13878.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Godinho RO, Duarte T, Pacini ES. New perspectives in signaling mediated by receptors coupled to stimulatory G protein: the emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway. Front Pharmacol. 2015;6:58.  https://doi.org/10.3389/fphar.2015.00058.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kang M, Chung KY, Walker JW. G-protein coupled receptor signaling in myocardium: not for the faint of heart. Physiology. 2007;22(3):174–84.CrossRefPubMedGoogle Scholar
  16. 16.
    Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kinase a and protein kinase C. Circ Res. 2000;87(12):1095–102.CrossRefPubMedGoogle Scholar
  17. 17.
    Kankanamge D, Ratnayake K, Samaradivakara S, Karunarathne A. Melanopsin (Opn4) utilizes Galphai and Gbetagamma as major signal transducers. J Cell Sci. 2018;131(11).  https://doi.org/10.1242/jcs.212910.
  18. 18.
    Siehler S. Regulation of RhoGEF proteins by G12/13-coupled receptors. Br J Pharmacol. 2009;158(1):41–9.  https://doi.org/10.1111/j.1476-5381.2009.00121.x.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pfreimer M, Vatter P, Langer T, Wieland T, Gierschik P, Moepps B. LARG links histamine-H1-receptor-activated Gq to rho-GTPase-dependent signaling pathways. Cell Signal. 2012;24(3):652–63.  https://doi.org/10.1016/j.cellsig.2011.10.014.CrossRefPubMedGoogle Scholar
  20. 20.
    Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbe JC, et al. The expanding roles of Gbetagamma subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev. 2013;65(2):545–77.  https://doi.org/10.1124/pr.111.005603.CrossRefPubMedGoogle Scholar
  21. 21.
    Khalil BD, Hsueh C, Cao Y, Abi Saab WF, Wang Y, Condeelis JS, et al. GPCR signaling mediates tumor metastasis via PI3Kbeta. Cancer Res. 2016;76(10):2944–53.  https://doi.org/10.1158/0008-5472.CAN-15-1675.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gulati S, Jin H, Masuho I, Orban T, Cai Y, Pardon E, et al. Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nat Commun. 2018;9(1):1996.  https://doi.org/10.1038/s41467-018-04432-0.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Perrault R, Wright B, Storie B, Hatherell A, Zahradka P. Tyrosine kinase-independent activation of extracellular-regulated kinase (ERK) 1/2 by the insulin-like growth factor-1 receptor. Cell Signal. 2011;23(4):739–46.  https://doi.org/10.1016/j.cellsig.2010.12.008.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang J, Xia Y. Assessing developmental roles of MKK4 and MKK7 in vitro. Commun Integr Biol. 2012;5(4):319–24.  https://doi.org/10.4161/cib.20216.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Urnukhsaikhan E, Cho H, Mishig-Ochir T, Seo YK, Park JK. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130–8.  https://doi.org/10.1016/j.lfs.2016.02.066.CrossRefPubMedGoogle Scholar
  26. 26.
    Yuen JW, Poon LS, Chan AS, Yu FW, Lo RK, Wong YH. Activation of STAT3 by specific Galpha subunits and multiple Gbetagamma dimers. Int J Biochem Cell Biol. 2010;42(6):1052–9.  https://doi.org/10.1016/j.biocel.2010.03.017.CrossRefPubMedGoogle Scholar
  27. 27.
    Wani N, Nasser MW, Ahirwar DK, Zhao H, Miao Z, Shilo K, et al. C-X-C motif chemokine 12/C-X-C chemokine receptor type 7 signaling regulates breast cancer growth and metastasis by modulating the tumor microenvironment. Breast Cancer Res. 2014;16(3):R54.  https://doi.org/10.1186/bcr3665.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tan CT, Chu CY, Lu YC, Chang CC, Lin BR, Wu HH, et al. CXCL12/CXCR4 promotes laryngeal and hypopharyngeal squamous cell carcinoma metastasis through MMP-13-dependent invasion via the ERK1/2/AP-1 pathway. Carcinogenesis. 2008;29(8):1519–27.  https://doi.org/10.1093/carcin/bgn108.CrossRefPubMedGoogle Scholar
  29. 29.
    Xia S, He C, Zhu Y, Wang S, Li H, Zhang Z, et al. GABABR-induced EGFR transactivation promotes migration of human prostate cancer cells. Mol Pharmacol. 2017;92(3):265–77.  https://doi.org/10.1124/mol.116.107854.CrossRefPubMedGoogle Scholar
  30. 30.
    Karunarathne WK, Giri L, Patel AK, Venkatesh KV, Gautam N. Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration. Proc Natl Acad Sci U S A. 2013;110(17):E1575–83.  https://doi.org/10.1073/pnas.1220755110.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Senarath K, Ratnayake K, Siripurapu P, Payton JL, Karunarathne A. Reversible G protein betagamma9 distribution-based assay reveals molecular underpinnings in subcellular, single-cell, and multicellular GPCR and G protein activity. Anal Chem. 2016;88(23):11450–9.  https://doi.org/10.1021/acs.analchem.6b02512.CrossRefPubMedGoogle Scholar
  32. 32.
    Linder ME, Middleton P, Hepler JR, Taussig R, Gilman AG, Mumby SM. Lipid modifications of G proteins: alpha subunits are palmitoylated. Proc Natl Acad Sci U S A. 1993;90(8):3675–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mumby SM, Casey PJ, Gilman AG, Gutowski S, Sternweis PC. G protein gamma subunits contain a 20-carbon isoprenoid. Proc Natl Acad Sci U S A. 1990;87(15):5873–7.  https://doi.org/10.1073/pnas.87.15.5873.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–49.  https://doi.org/10.1146/annurev.bi.56.070187.003151.CrossRefPubMedGoogle Scholar
  35. 35.
    Akgoz M, Kalyanaraman V, Gautam N. Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex. J Biol Chem. 2004;279(49):51541–4.  https://doi.org/10.1074/jbc.M410639200.CrossRefPubMedGoogle Scholar
  36. 36.
    Saini DK, Kalyanaraman V, Chisari M, Gautam N. A family of G protein betagamma subunits translocate reversibly from the plasma membrane to endomembranes on receptor activation. J Biol Chem. 2007;282(33):24099–108.  https://doi.org/10.1074/jbc.M701191200.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Saini DK, Karunarathne WK, Angaswamy N, Saini D, Cho JH, Kalyanaraman V, et al. Regulation of Golgi structure and secretion by receptor-induced G protein betagamma complex translocation. Proc Natl Acad Sci U S A. 2010;107(25):11417–22.  https://doi.org/10.1073/pnas.1003042107.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ajith Karunarathne WK, O'Neill PR, Martinez-Espinosa PL, Kalyanaraman V, Gautam N. All G protein betagamma complexes are capable of translocation on receptor activation. Biochem Biophys Res Commun. 2012;421(3):605–11.  https://doi.org/10.1016/j.bbrc.2012.04.054.CrossRefPubMedGoogle Scholar
  39. 39.
    Ratnayake K, Kankanamge D, Senarath K, Siripurapu P, Weis N, Tennakoon M, et al. Measurement of GPCR-G protein activity in living cells. In: Shukla AK, editor. Methods in cell biology, vol. 142. Cambridge, MA: Academic; 2017. p. 1–25.Google Scholar
  40. 40.
    Giri L, Patel AK, Karunarathne WK, Kalyanaraman V, Venkatesh KV, Gautam N. A G-protein subunit translocation embedded network motif underlies GPCR regulation of calcium oscillations. Biophys J. 2014;107(1):242–54.  https://doi.org/10.1016/j.bpj.2014.05.020.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    O'Neill PR, Gautam N. Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration. Mol Biol Cell. 2014;25(15):2305–14.  https://doi.org/10.1091/mbc.E14-04-0870.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ratnayake K, Payton JL, Lakmal OH, Karunarathne A. Blue light excited retinal intercepts cellular signaling. Sci Rep. 2018;8(1):10207.  https://doi.org/10.1038/s41598-018-28254-8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Samaradivakara S, Kankanamge D, Senarath K, Ratnayake K, Karunarathne A. G protein gamma (Ggamma) subtype dependent targeting of GRK2 to M3 receptor by Gbetagamma. Biochem Biophys Res Commun. 2018;503(1):165–70.  https://doi.org/10.1016/j.bbrc.2018.05.204.CrossRefPubMedGoogle Scholar
  44. 44.
    Kasai RS, Kusumi A. Single-molecule imaging revealed dynamic GPCR dimerization. Curr Opin Cell Biol. 2014;27:78–86.  https://doi.org/10.1016/j.ceb.2013.11.008.CrossRefPubMedGoogle Scholar
  45. 45.
    Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol. 2011;192(3):463–80.  https://doi.org/10.1083/jcb.201009128.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yanagawa M, Hiroshima M, Togashi Y, Abe M, Yamashita T, Shichida Y, et al. Single-molecule diffusion-based estimation of ligand effects on G protein–coupled receptors. Sci Signal. 2018;11(548).  https://doi.org/10.1126/scisignal.aao1917.
  47. 47.
    Tabor A, Weisenburger S, Banerjee A, Purkayastha N, Kaindl JM, Hubner H, et al. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level. Sci Rep. 2016;6:33233.  https://doi.org/10.1038/srep33233.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lamichhane R, Liu JJ, Pljevaljcic G, White KL, van der Schans E, Katritch V, et al. Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor beta2AR. Proc Natl Acad Sci U S A. 2015;112(46):14254–9.  https://doi.org/10.1073/pnas.1519626112.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol. 2008;39(2):127–32.  https://doi.org/10.1165/rcmb.2008-0091TR.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol. 2006;362(4):623–39.  https://doi.org/10.1016/j.jmb.2006.07.045.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev. 2013;65(2):670–709.  https://doi.org/10.1124/pr.110.003707.CrossRefPubMedGoogle Scholar
  52. 52.
    Ponsioen B, Gloerich M, Ritsma L, Rehmann H, Bos JL, Jalink K. Direct spatial control of Epac1 by cyclic AMP. Mol Cell Biol. 2009;29(10):2521–31.  https://doi.org/10.1128/MCB.01630-08.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    de Rooij J, Rehmann H, van Triest M, Cool RH, Wittinghofer A, Bos JL. Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem. 2000;275(27):20829–36.  https://doi.org/10.1074/jbc.M001113200.CrossRefPubMedGoogle Scholar
  54. 54.
    Patel N, Gold MG. The genetically encoded tool set for investigating cAMP: more than the sum of its parts. Front Pharmacol. 2015;6:164.  https://doi.org/10.3389/fphar.2015.00164.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ. Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem. 2004;279(36):37215–8.  https://doi.org/10.1074/jbc.C400302200.CrossRefPubMedGoogle Scholar
  56. 56.
    Everett KL, Cooper DM. An improved targeted cAMP sensor to study the regulation of adenylyl cyclase 8 by Ca2+ entry through voltage-gated channels. PLoS One. 2013;8(9):e75942.  https://doi.org/10.1371/journal.pone.0075942.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    DiPilato LM, Zhang J. The role of membrane microdomains in shaping beta2-adrenergic receptor-mediated cAMP dynamics. Mol BioSyst. 2009;5(8):832–7.  https://doi.org/10.1039/b823243a.CrossRefPubMedGoogle Scholar
  58. 58.
    Dyachok O, Isakov Y, Sagetorp J, Tengholm A. Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature. 2006;439(7074):349–52.  https://doi.org/10.1038/nature04410.CrossRefPubMedGoogle Scholar
  59. 59.
    Lindner R, Hartmann E, Tarnawski M, Winkler A, Frey D, Reinstein J, et al. Photoactivation mechanism of a bacterial light-regulated adenylyl cyclase. J Mol Biol. 2017;429(9):1336–51.  https://doi.org/10.1016/j.jmb.2017.03.020.CrossRefPubMedGoogle Scholar
  60. 60.
    Efetova M, Schwärzel M. Photoactivatable adenylyl cyclases (PACs) as a tool to study cAMP signaling in vivo: an overview. In: Zaccolo M, editor. cAMP signaling: methods and protocols. New York: Springer New York; 2015. p. 131–5.  https://doi.org/10.1007/978-1-4939-2537-7_10.CrossRefGoogle Scholar
  61. 61.
    Antal CE, Newton AC. Spatiotemporal dynamics of phosphorylation in lipid second messenger signaling. Mol Cell Proteomics. 2013;12(12):3498–508.  https://doi.org/10.1074/mcp.R113.029819.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kunkel MT, Newton AC. Calcium transduces plasma membrane receptor signals to produce diacylglycerol at Golgi membranes. J Biol Chem. 2010;285(30):22748–52.  https://doi.org/10.1074/jbc.C110.123133.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Steinberg SF. Structural basis of protein kinase C isoform function. Physiol Rev. 2008;88(4):1341–78.  https://doi.org/10.1152/physrev.00034.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Oancea E, Teruel MN, Quest AFG, Meyer T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol. 1998;140(3):485–98.  https://doi.org/10.1083/jcb.140.3.485.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Tewson P, Westenberg M, Zhao Y, Campbell RE, Quinn AM, Hughes TE. Simultaneous detection of Ca2+ and diacylglycerol signaling in living cells. PLoS One. 2012;7(8):e42791.  https://doi.org/10.1371/journal.pone.0042791.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Stauffer TP, Ahn S, Meyer T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol. 1998;8(6):343–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Varnai P, Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol. 1998;143(2):501–10.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Billups D, Billups B, Challiss RA, Nahorski SR. Modulation of Gq-protein-coupled inositol trisphosphate and Ca2+ signaling by the membrane potential. J Neurosci. 2006;26(39):9983–95.  https://doi.org/10.1523/JNEUROSCI.2773-06.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hao JJ, Liu Y, Kruhlak M, Debell KE, Rellahan BL, Shaw S. Phospholipase C-mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane. J Cell Biol. 2009;184(3):451–62.  https://doi.org/10.1083/jcb.200807047.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Horowitz LF, Hirdes W, Suh BC, Hilgemann DW, Mackie K, Hille B. Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current. J Gen Physiol. 2005;126(3):243–62.  https://doi.org/10.1085/jgp.200509309.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell. 2000;100(2):221–8.  https://doi.org/10.1016/s0092-8674(00)81560-3.CrossRefPubMedGoogle Scholar
  72. 72.
    Hirose K. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999;284(5419):1527–30.  https://doi.org/10.1126/science.284.5419.1527.CrossRefPubMedGoogle Scholar
  73. 73.
    Nash MS, Young KW, Willars GB, Challiss RA, Nahorski SR. Single-cell imaging of graded ins(1,4,5)P3 production following G-protein-coupled-receptor activation. Biochem J. 2001;356(Pt 1):137–42.  https://doi.org/10.1042/bj3560137.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Santagata S, Boggon TJ, Baird CL, Gomez CA, Zhao J, Shan WS, et al. G-protein signaling through tubby proteins. Science. 2001;292(5524):2041–50.  https://doi.org/10.1126/science.1061233.CrossRefPubMedGoogle Scholar
  75. 75.
    Quinn KV, Behe P, Tinker A. Monitoring changes in membrane phosphatidylinositol 4,5-bisphosphate in living cells using a domain from the transcription factor tubby. J Physiol. 2008;586(12):2855–71.  https://doi.org/10.1113/jphysiol.2008.153791.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Gallegos LL, Newton AC. Genetically encoded fluorescent reporters to visualize protein kinase C activation in live cells. Methods Mol Biol. 2011;756:295–310.  https://doi.org/10.1007/978-1-61779-160-4_17.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Feng X, Zhang J, Barak LS, Meyer T, Caron MG, Hannun YA. Visualization of dynamic trafficking of a protein kinase C βII/green fluorescent protein conjugate reveals differences in G protein-coupled receptor activation and desensitization. J Biol Chem. 1998;273(17):10755–62.  https://doi.org/10.1074/jbc.273.17.10755.CrossRefPubMedGoogle Scholar
  78. 78.
    Gallegos LL, Kunkel MT, Newton AC. Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J Biol Chem. 2006;281(41):30947–56.  https://doi.org/10.1074/jbc.M603741200.CrossRefPubMedGoogle Scholar
  79. 79.
    Sakai N, Sasaki K, Ikegaki N, Shirai Y, Ono Y, Saito N. Direct visualization of the translocation of the gamma-subspecies of protein kinase C in living cells using fusion proteins with green fluorescent protein. J Cell Biol. 1997;139(6):1465–76.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wan Q, Okashah N, Inoue A, Nehme R, Carpenter B, Tate CG, et al. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J Biol Chem. 2018;293(19):7466–73.  https://doi.org/10.1074/jbc.RA118.001975.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Barak LS, Ferguson SS, Zhang J, Caron MG. A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem. 1997;272(44):27497–500.  https://doi.org/10.1074/jbc.272.44.27497.CrossRefPubMedGoogle Scholar
  82. 82.
    Carpenter B, Tate CG. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng Des Sel. 2016;29(12):583–94.  https://doi.org/10.1093/protein/gzw049.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Nehme R, Carpenter B, Singhal A, Strege A, Edwards PC, White CF, et al. Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS One. 2017;12(4):e0175642.  https://doi.org/10.1371/journal.pone.0175642.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature. 2011;469(7329):175–80.  https://doi.org/10.1038/nature09648.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.  https://doi.org/10.1038/363446a0.CrossRefPubMedGoogle Scholar
  86. 86.
    Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Holzer W, De Genst E, et al. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 1998;17(13):3512–20.  https://doi.org/10.1093/emboj/17.13.3512.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Manglik A, Kobilka BK, Steyaert J. Nanobodies to study G protein-coupled receptor structure and function. Annu Rev Pharmacol Toxicol. 2017;57:19–37.  https://doi.org/10.1146/annurev-pharmtox-010716-104710.CrossRefPubMedGoogle Scholar
  88. 88.
    Rasmussen SGF, Choi H-J, Fung JJ, Pardon E, Casarosa P, Chae PS, et al. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature. 2011;469(7329):175–80.  https://doi.org/10.1038/nature09648.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Irannejad R, Pessino V, Mika D, Huang B, Wedegaertner PB, Conti M, et al. Functional selectivity of GPCR-directed drug action through location bias. Nat Chem Biol. 2017;13(7):799–806.  https://doi.org/10.1038/nchembio.2389.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Tennakoon M, Kankanamge D, Senarath K, Fasih Z, Karunarathne A. Statins perturb Gbetagamma signaling and cell behavior in a Ggamma subtype dependent manner. Mol Pharmacol. 2019;95(4):361–75.  https://doi.org/10.1124/mol.118.114710.CrossRefPubMedGoogle Scholar
  91. 91.
    Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol. 2003;160(5):629–33.  https://doi.org/10.1083/jcb.200210140.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Tsien RY, Bacskai BJ, Adams SR. FRET for studying intracellular signalling. Trends Cell Biol. 1993;3(7):242–5.CrossRefPubMedGoogle Scholar
  93. 93.
    Masi A, Cicchi R, Carloni A, Pavone FS, Arcangeli A. Optical methods in the study of protein–protein interactions. Adv Exp Med Biol. 2010;674:33–42.CrossRefPubMedGoogle Scholar
  94. 94.
    Schaferling M, Nagl S. Forster resonance energy transfer methods for quantification of protein–protein interactions on microarrays. Methods Mol Biol. 2011;723:303–20.  https://doi.org/10.1007/978-1-61779-043-0_19.CrossRefPubMedGoogle Scholar
  95. 95.
    Telser A. Fundamentals of light microscopy and electronic imaging. Shock. 2002;17(5):442.CrossRefGoogle Scholar
  96. 96.
    Hoffmann C, Gaietta G, Bunemann M, Adams SR, Oberdorff-Maass S, Behr B, et al. A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods. 2005;2(3):171–6.  https://doi.org/10.1038/nmeth742.CrossRefPubMedGoogle Scholar
  97. 97.
    McCann JJ, Choi UB, Zheng L, Weninger K, Bowen ME. Optimizing methods to recover absolute FRET efficiency from immobilized single molecules. Biophys J. 2010;99(3):961–70.  https://doi.org/10.1016/j.bpj.2010.04.063.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Lohse MJ, Nikolaev VO, Hein P, Hoffmann C, Vilardaga JP, Bunemann M. Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci. 2008;29(3):159–65.  https://doi.org/10.1016/j.tips.2007.12.002.CrossRefPubMedGoogle Scholar
  99. 99.
    Vilardaga J-P, Bünemann M, Krasel C, Castro M, Lohse MJ. Measurement of the millisecond activation switch of G protein–coupled receptors in living cells. Nat Biotechnol. 2003;21:807.  https://doi.org/10.1038/nbt838.CrossRefPubMedGoogle Scholar
  100. 100.
    Sheikh SP, Vilardarga J-P, Baranski TJ, Lichtarge O, Iiri T, Meng EC, et al. Similar structures and shared switch mechanisms of the β2-adrenoceptor and the parathyroid hormone receptor. J Biol Chem. 1999;274(24):17033–41.  https://doi.org/10.1074/jbc.274.24.17033.CrossRefPubMedGoogle Scholar
  101. 101.
    Vilardaga JP, Frank M, Krasel C, Dees C, Nissenson RA, Lohse MJ. Differential conformational requirements for activation of G proteins and the regulatory proteins arrestin and G protein-coupled receptor kinase in the G protein-coupled receptor for parathyroid hormone (PTH)/PTH-related protein. J Biol Chem. 2001;276(36):33435–43.  https://doi.org/10.1074/jbc.M011495200.CrossRefPubMedGoogle Scholar
  102. 102.
    Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–44.  https://doi.org/10.1146/annurev.biochem.67.1.509.CrossRefPubMedGoogle Scholar
  103. 103.
    Miyawaki A, Tsien RY. Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol. 2000;327:472–500.CrossRefPubMedGoogle Scholar
  104. 104.
    Reiner S, Ambrosio M, Hoffmann C, Lohse MJ. Differential signaling of the endogenous agonists at the beta2-adrenergic receptor. J Biol Chem. 2010;285(46):36188–98.  https://doi.org/10.1074/jbc.M110.175604.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Lohse MJ, Bunemann M, Hoffmann C, Vilardaga JP, Nikolaev VO. Monitoring receptor signaling by intramolecular FRET. Curr Opin Pharmacol. 2007;7(5):547–53.  https://doi.org/10.1016/j.coph.2007.08.007.CrossRefPubMedGoogle Scholar
  106. 106.
    Chachisvilis M, Zhang YL, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A. 2006;103(42):15463–8.  https://doi.org/10.1073/pnas.0607224103.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Rochais F, Vilardaga JP, Nikolaev VO, Bunemann M, Lohse MJ, Engelhardt S. Real-time optical recording of beta1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. J Clin Invest. 2007;117(1):229–35.  https://doi.org/10.1172/JCI30012.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Zhao X, Jones A, Olson KR, Peng K, Wehrman T, Park A, et al. A homogeneous enzyme fragment complementation-based beta-arrestin translocation assay for high-throughput screening of G-protein-coupled receptors. J Biomol Screen. 2008;13(8):737–47.  https://doi.org/10.1177/1087057108321531.CrossRefPubMedGoogle Scholar
  109. 109.
    den Hamer A, Dierickx P, Arts R, de Vries J, Brunsveld L, Merkx M. Bright bioluminescent BRET sensor proteins for measuring intracellular caspase activity. ACS Sens. 2017;2(6):729–34.  https://doi.org/10.1021/acssensors.7b00239.CrossRefGoogle Scholar
  110. 110.
    Zhao H, Doyle TC, Wong RJ, Cao Y, Stevenson DK, Piwnica-Worms D, et al. Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging. 2004;3(1):43–54.  https://doi.org/10.1162/153535004773861714.CrossRefPubMedGoogle Scholar
  111. 111.
    Woo J, von Arnim AG. Mutational optimization of the coelenterazine-dependent luciferase from Renilla. Plant Methods. 2008;4(1):23.  https://doi.org/10.1186/1746-4811-4-23.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Dacres H, Michie M, Trowell SC. Comparison of enhanced bioluminescence energy transfer donors for protease biosensors. Anal Biochem. 2012;424(2):206–10.  https://doi.org/10.1016/j.ab.2012.02.028.CrossRefPubMedGoogle Scholar
  113. 113.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol. 2012;7(11):1848–57.  https://doi.org/10.1021/cb3002478.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Sleno R, Petrin D, Devost D, Goupil E, Zhang A, Hebert TE. Designing BRET-based conformational biosensors for G protein-coupled receptors. Methods. 2016;92:11–8.  https://doi.org/10.1016/j.ymeth.2015.05.003.CrossRefPubMedGoogle Scholar
  115. 115.
    Picard LP, Schonegge AM, Lohse MJ, Bouvier M. Bioluminescence resonance energy transfer-based biosensors allow monitoring of ligand- and transducer-mediated GPCR conformational changes. Commun Biol. 2018;1(1):106.  https://doi.org/10.1038/s42003-018-0101-z.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Devost D, Sleno R, Petrin D, Zhang A, Shinjo Y, Okde R, et al. Conformational profiling of the AT1 angiotensin II receptor reflects biased agonism, G protein coupling, and cellular context. J Biol Chem. 2017;292(13):5443–56.  https://doi.org/10.1074/jbc.M116.763854.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Yoshida T, Kakizuka A, Imamura H. BTeam, a novel BRET-based biosensor for the accurate quantification of ATP concentration within living cells. Sci Rep. 2016;6:39618.  https://doi.org/10.1038/srep39618.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Gales C, Rebois RV, Hogue M, Trieu P, Breit A, Hebert TE, et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods. 2005;2(3):177–84.  https://doi.org/10.1038/nmeth743.CrossRefPubMedGoogle Scholar
  119. 119.
    Galés C, Van Durm JJJ, Schaak S, Pontier S, Percherancier Y, Audet M, et al. Probing the activation-promoted structural rearrangements in preassembled receptor–G protein complexes. Nat Struct Mol Biol. 2006;13:778.  https://doi.org/10.1038/nsmb1134.CrossRefPubMedGoogle Scholar
  120. 120.
    Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev. 2012;64(2):299–336.  https://doi.org/10.1124/pr.110.004309.CrossRefPubMedGoogle Scholar
  121. 121.
    Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev. 2005;85(4):1159–204.  https://doi.org/10.1152/physrev.00003.2005.CrossRefPubMedGoogle Scholar
  122. 122.
    Frank M, Thumer L, Lohse MJ, Bunemann M. G protein activation without subunit dissociation depends on a G{alpha}(i)-specific region. J Biol Chem. 2005;280(26):24584–90.  https://doi.org/10.1074/jbc.M414630200.CrossRefPubMedGoogle Scholar
  123. 123.
    Levitzki A, Klein S. G-protein subunit dissociation is not an integral part of G-protein action. Chembiochem. 2002;3(9):815–8.  https://doi.org/10.1002/1439-7633(20020902)3:9<815::AID-CBIC815>3.0.CO;2-E.CrossRefPubMedGoogle Scholar
  124. 124.
    Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008;9(1):60–71.  https://doi.org/10.1038/nrm2299.CrossRefPubMedGoogle Scholar
  125. 125.
    Birnbaumer L. The discovery of signal transduction by G proteins: a personal account and an overview of the initial findings and contributions that led to our present understanding. Biochim Biophys Acta. 2007;1768(4):756–71.  https://doi.org/10.1016/j.bbamem.2006.09.027.CrossRefPubMedGoogle Scholar
  126. 126.
    Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature. 2008;455(7212):497–502.  https://doi.org/10.1038/nature07330.CrossRefPubMedGoogle Scholar
  127. 127.
    Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, et al. Crystal structure of metarhodopsin II. Nature. 2011;471(7340):651–5.  https://doi.org/10.1038/nature09789.CrossRefPubMedGoogle Scholar
  128. 128.
    Choe HW, Park JH, Kim YJ, Ernst OP. Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures. Neuropharmacology. 2011;60(1):52–7.  https://doi.org/10.1016/j.neuropharm.2010.07.018.CrossRefPubMedGoogle Scholar
  129. 129.
    Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature. 2011;477(7366):549–55.  https://doi.org/10.1038/nature10361.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Cai K, Itoh Y, Khorana HG. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc Natl Acad Sci U S A. 2001;98(9):4877–82.  https://doi.org/10.1073/pnas.051632898.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Bae H, Cabrera-Vera TM, Depree KM, Graber SG, Hamm HE. Two amino acids within the α4 helix of Gαi1 mediate coupling with 5-hydroxytryptamine1B receptors. J Biol Chem. 1999;274(21):14963–71.  https://doi.org/10.1074/jbc.274.21.14963.CrossRefPubMedGoogle Scholar
  132. 132.
    Taylor JM, Jacob-Mosier GG, Lawton RG, Remmers AE, Neubig RR. Binding of an alpha 2 adrenergic receptor third intracellular loop peptide to G beta and the amino terminus of G alpha. J Biol Chem. 1994;269(44):27618–24.PubMedGoogle Scholar
  133. 133.
    Azpiazu I, Cruzblanca H, Li P, Linder M, Zhuo M, Gautam N. A G protein gamma subunit-specific peptide inhibits muscarinic receptor signaling. J Biol Chem. 1999;274(50):35305–8.  https://doi.org/10.1074/jbc.274.50.35305.CrossRefPubMedGoogle Scholar
  134. 134.
    Taylor JM, Jacob-Mosier GG, Lawton RG, VanDort M, Neubig RR. Receptor and membrane interaction sites on Gbeta. A receptor-derived peptide binds to the carboxyl terminus. J Biol Chem. 1996;271(7):3336–9.  https://doi.org/10.1074/jbc.271.7.3336.CrossRefPubMedGoogle Scholar
  135. 135.
    Heithier H, Frohlich M, Dees C, Baumann M, Haring M, Gierschik P, et al. Subunit interactions of GTP-binding proteins. Eur J Biochem. 1992;204(3):1169–81.CrossRefPubMedGoogle Scholar
  136. 136.
    Koestler M, Heithier H, Baumann M, Dees C, Hekman M, Vaz W. Association-dissociation of purified subunits of GTP-binding proteins measured by fluorescence energy transfer. J Protein Chem. 1989;8(3):406.CrossRefPubMedGoogle Scholar
  137. 137.
    Ruiz-Velasco V, Ikeda SR. Functional expression and FRET analysis of green fluorescent proteins fused to G-protein subunits in rat sympathetic neurons. J Physiol. 2001;537(Pt 3):679–92.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Bunemann M, Frank M, Lohse MJ. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci U S A. 2003;100(26):16077–82.  https://doi.org/10.1073/pnas.2536719100.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Philip F, Sengupta P, Scarlata S. Signaling through a G protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model. J Biol Chem. 2007;282(26):19203–16.  https://doi.org/10.1074/jbc.M701558200.CrossRefPubMedGoogle Scholar
  140. 140.
    Ayoub MA, Maurel D, Binet V, Fink M, Prezeau L, Ansanay H, et al. Real-time analysis of agonist-induced activation of protease-activated receptor 1/Galphai1 protein complex measured by bioluminescence resonance energy transfer in living cells. Mol Pharmacol. 2007;71(5):1329–40.  https://doi.org/10.1124/mol.106.030304.CrossRefPubMedGoogle Scholar
  141. 141.
    Audet N, Gales C, Archer-Lahlou E, Vallieres M, Schiller PW, Bouvier M, et al. Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing delta-opioid receptors and heterotrimeric G proteins. J Biol Chem. 2008;283(22):15078–88.  https://doi.org/10.1074/jbc.M707941200.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Yu JZ, Rasenick MM. Real-time visualization of a fluorescent G(alpha)(s): dissociation of the activated G protein from plasma membrane. Mol Pharmacol. 2002;61(2):352–9.CrossRefPubMedGoogle Scholar
  143. 143.
    Hein P, Rochais F, Hoffmann C, Dorsch S, Nikolaev VO, Engelhardt S, et al. Gs activation is time-limiting in initiating receptor-mediated signaling. J Biol Chem. 2006;281(44):33345–51.  https://doi.org/10.1074/jbc.M606713200.CrossRefPubMedGoogle Scholar
  144. 144.
    Hein P, Frank M, Hoffmann C, Lohse MJ, Bunemann M. Dynamics of receptor/G protein coupling in living cells. EMBO J. 2005;24(23):4106–14.  https://doi.org/10.1038/sj.emboj.7600870.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Neubig RR, Connolly MP, Remmers AE. Rapid kinetics of G protein subunit association: a rate-limiting conformational change? FEBS Lett. 1994;355(3):251–3.CrossRefPubMedGoogle Scholar
  146. 146.
    Janetopoulos C, Jin T, Devreotes P. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science. 2001;291(5512):2408–11.  https://doi.org/10.1126/science.1055835.CrossRefPubMedGoogle Scholar
  147. 147.
    Gibson SK, Gilman AG. Gialpha and Gbeta subunits both define selectivity of G protein activation by alpha2-adrenergic receptors. Proc Natl Acad Sci U S A. 2006;103(1):212–7.  https://doi.org/10.1073/pnas.0509763102.CrossRefPubMedGoogle Scholar
  148. 148.
    van Unen J, Stumpf AD, Schmid B, Reinhard NR, Hordijk PL, Hoffmann C, et al. A new generation of FRET sensors for robust measurement of Galphai1, Galphai2 and Galphai3 activation kinetics in single cells. PLoS One. 2016;11(1):e0146789.  https://doi.org/10.1371/journal.pone.0146789.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Klarenbeek JB, Goedhart J, Hink MA, Gadella TW, Jalink K. A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One. 2011;6(4):e19170.  https://doi.org/10.1371/journal.pone.0019170.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Sparta B, Pargett M, Minguet M, Distor K, Bell G, Albeck JG. Receptor level mechanisms are required for epidermal growth factor (EGF)-stimulated extracellular signal-regulated kinase (ERK) activity pulses. J Biol Chem. 2015;290(41):24784–92.  https://doi.org/10.1074/jbc.M115.662247.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Hynes TR, Mervine SM, Yost EA, Sabo JL, Berlot CH. Live cell imaging of Gs and the beta2-adrenergic receptor demonstrates that both alphas and beta1gamma7 internalize upon stimulation and exhibit similar trafficking patterns that differ from that of the beta2-adrenergic receptor. J Biol Chem. 2004;279(42):44101–12.  https://doi.org/10.1074/jbc.M405151200.CrossRefPubMedGoogle Scholar
  152. 152.
    Akhter SA, Luttrell LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science. 1998;280(5363):574–7.CrossRefPubMedGoogle Scholar
  153. 153.
    Wettschureck N, Rutten H, Zywietz A, Gehring D, Wilkie TM, Chen J, et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Nat Med. 2001;7(11):1236–40.  https://doi.org/10.1038/nm1101-1236.CrossRefPubMedGoogle Scholar
  154. 154.
    Dorn GW 2nd. Physiologic growth and pathologic genes in cardiac development and cardiomyopathy. Trends Cardiovasc Med. 2005;15(5):185–9.  https://doi.org/10.1016/j.tcm.2005.05.009.CrossRefPubMedGoogle Scholar
  155. 155.
    Wedegaertner PB, Chu DH, Wilson PT, Levis MJ, Bourne HR. Palmitoylation is required for signaling functions and membrane attachment of Gq alpha and Gs alpha. J Biol Chem. 1993;268(33):25001–8.PubMedGoogle Scholar
  156. 156.
    Wilson PT, Bourne HR. Fatty acylation of alpha z. Effects of palmitoylation and myristoylation on alpha z signaling. J Biol Chem. 1995;270(16):9667–75.CrossRefPubMedGoogle Scholar
  157. 157.
    Adjobo-Hermans MJ, Goedhart J, van Weeren L, Nijmeijer S, Manders EM, Offermanns S, et al. Real-time visualization of heterotrimeric G protein Gq activation in living cells. BMC Biol. 2011;9:32.  https://doi.org/10.1186/1741-7007-9-32.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Jensen JB, Lyssand JS, Hague C, Hille B. Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels. J Gen Physiol. 2009;133(4):347–59.  https://doi.org/10.1085/jgp.200810075.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Mastop M, Reinhard NR, Zuconelli CR, Terwey F, Gadella TWJ Jr, van Unen J, et al. A FRET-based biosensor for measuring Galpha13 activation in single cells. PLoS One. 2018;13(3):e0193705.  https://doi.org/10.1371/journal.pone.0193705.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Shenoy SK, Lefkowitz RJ. Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem. 2003;278(16):14498–506.  https://doi.org/10.1074/jbc.M209626200.CrossRefPubMedGoogle Scholar
  161. 161.
    Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, et al. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A. 2003;100(20):11406–11.  https://doi.org/10.1073/pnas.1936664100.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Violin JD, Ren XR, Lefkowitz RJ. G-protein-coupled receptor kinase specificity for beta-arrestin recruitment to the beta2-adrenergic receptor revealed by fluorescence resonance energy transfer. J Biol Chem. 2006;281(29):20577–88.  https://doi.org/10.1074/jbc.M513605200.CrossRefPubMedGoogle Scholar
  163. 163.
    Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, et al. Detection of 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A. 2000;97(7):3684–9.  https://doi.org/10.1073/pnas.97.7.3684.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Kroeger KM, Hanyaloglu AC, Seeber RM, Miles LE, Eidne KA. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J Biol Chem. 2001;276(16):12736–43.  https://doi.org/10.1074/jbc.M011311200.CrossRefPubMedGoogle Scholar
  165. 165.
    Hamdan FF, Audet M, Garneau P, Pelletier J, Bouvier M. High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen. 2005;10(5):463–75.  https://doi.org/10.1177/1087057105275344.CrossRefPubMedGoogle Scholar
  166. 166.
    Qiu Y, Loh HH, Law PY. Phosphorylation of the delta-opioid receptor regulates its beta-arrestins selectivity and subsequent receptor internalization and adenylyl cyclase desensitization. J Biol Chem. 2007;282(31):22315–23.  https://doi.org/10.1074/jbc.M611258200.CrossRefPubMedGoogle Scholar
  167. 167.
    Coulon V, Audet M, Homburger V, Bockaert J, Fagni L, Bouvier M, et al. Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. Biophys J. 2008;94(3):1001–9.  https://doi.org/10.1529/biophysj.107.117275.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Klewe IV, Nielsen SM, Tarpo L, Urizar E, Dipace C, Javitch JA, et al. Recruitment of beta-arrestin2 to the dopamine D2 receptor: insights into anti-psychotic and anti-parkinsonian drug receptor signaling. Neuropharmacology. 2008;54(8):1215–22.  https://doi.org/10.1016/j.neuropharm.2008.03.015.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Masri B, Salahpour A, Didriksen M, Ghisi V, Beaulieu JM, Gainetdinov RR, et al. Antagonism of dopamine D2 receptor/beta-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc Natl Acad Sci U S A. 2008;105(36):13656–61.  https://doi.org/10.1073/pnas.0803522105.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Hasbi A, Devost D, Laporte SA, Zingg HH. Real-time detection of interactions between the human oxytocin receptor and G protein-coupled receptor kinase-2. Mol Endocrinol. 2004;18(5):1277–86.  https://doi.org/10.1210/me.2003-0440.CrossRefPubMedGoogle Scholar
  171. 171.
    Jorgensen R, Kubale V, Vrecl M, Schwartz TW, Elling CE. Oxyntomodulin differentially affects glucagon-like peptide-1 receptor beta-arrestin recruitment and signaling through Galpha(s). J Pharmacol Exp Ther. 2007;322(1):148–54.  https://doi.org/10.1124/jpet.107.120006.CrossRefPubMedGoogle Scholar
  172. 172.
    Jorgensen R, Holliday ND, Hansen JL, Vrecl M, Heding A, Schwartz TW, et al. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer. Mol Pharmacol. 2008;73(2):349–58.CrossRefPubMedGoogle Scholar
  173. 173.
    Dremier S, Kopperud R, Doskeland SO, Dumont JE, Maenhaut C. Search for new cyclic AMP-binding proteins. FEBS Lett. 2003;546(1):103–7.CrossRefPubMedGoogle Scholar
  174. 174.
    Lee KA. Transcriptional regulation by cAMP. Curr Opin Cell Biol. 1991;3(6):953–9.CrossRefPubMedGoogle Scholar
  175. 175.
    Prasad KN, Cole WC, Yan XD, Nahreini P, Kumar B, Hanson A, et al. Defects in cAMP-pathway may initiate carcinogenesis in dividing nerve cells: a review. Apoptosis. 2003;8(6):579–86.  https://doi.org/10.1023/A:1026179324295.CrossRefPubMedGoogle Scholar
  176. 176.
    Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol. 2000;2(11):805–11.  https://doi.org/10.1038/35041046.CrossRefPubMedGoogle Scholar
  177. 177.
    Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux E. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature. 2003;425(6954):200–5.  https://doi.org/10.1038/nature01922.CrossRefPubMedGoogle Scholar
  178. 178.
    Storch U, Straub J, Erdogmus S, Gudermann T, Mederos YSM. Dynamic monitoring of Gi/o-protein-mediated decreases of intracellular cAMP by FRET-based Epac sensors. Pflugers Arch. 2017;469(5–6):725–37.  https://doi.org/10.1007/s00424-017-1975-1.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    DiPilato LM, Cheng X, Zhang J. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A. 2004;101(47):16513–8.  https://doi.org/10.1073/pnas.0405973101.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Ponimaskin EG, Heine M, Zeug A, Voyno-Yasenetskaya T, Salonikidis PS. Monitoring receptor-mediated changes of intracellular cAMP level by using ion channels and fluorescent proteins as biosensors. In: Chattopadhyay A, editor. Serotonin receptors in neurobiology. Frontiers in neuroscience. Boca Raton: CRC; 2007.Google Scholar
  181. 181.
    Patterson G, Day RN, Piston D. Fluorescent protein spectra. J Cell Sci. 2001;114(Pt 5):837–8.PubMedGoogle Scholar
  182. 182.
    Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 2002;20(1):87–90.  https://doi.org/10.1038/nbt0102-87.CrossRefPubMedGoogle Scholar
  183. 183.
    Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, et al. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol. 2000;2(1):25–9.  https://doi.org/10.1038/71345.CrossRefPubMedGoogle Scholar
  184. 184.
    Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science. 2002;295(5560):1711–5.  https://doi.org/10.1126/science.1069982.CrossRefPubMedGoogle Scholar
  185. 185.
    Diller TC, Madhusudan XNH, Taylor SS. Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II beta regulatory subunit. Structure. 2001;9(1):73–82.CrossRefPubMedGoogle Scholar
  186. 186.
    Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S. Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res. 2006;99(10):1084–91.  https://doi.org/10.1161/01.RES.0000250046.69918.d5.CrossRefPubMedGoogle Scholar
  187. 187.
    Jiang LI, Collins J, Davis R, Lin KM, DeCamp D, Roach T, et al. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J Biol Chem. 2007;282(14):10576–84.  https://doi.org/10.1074/jbc.M609695200.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    van der Wal J, Habets R, Varnai P, Balla T, Jalink K. Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J Biol Chem. 2001;276(18):15337–44.  https://doi.org/10.1074/jbc.M007194200.CrossRefPubMedGoogle Scholar
  189. 189.
    Chernov KG, Redchuk TA, Omelina ES, Verkhusha VV. Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. Chem Rev. 2017;117(9):6423–46.  https://doi.org/10.1021/acs.chemrev.6b00700.CrossRefPubMedGoogle Scholar
  190. 190.
    Violin JD, Zhang J, Tsien RY, Newton AC. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol. 2003;161(5):899–909.  https://doi.org/10.1083/jcb.200302125.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Sato M, Ueda Y, Umezawa Y. Imaging diacylglycerol dynamics at organelle membranes. Nat Methods. 2006;3(10):797–9.  https://doi.org/10.1038/nmeth930.CrossRefPubMedGoogle Scholar
  192. 192.
    Ferraz-Nogueira JP, Diez-Guerra FJ, Llopis J. Visualization of phosphatidic acid fluctuations in the plasma membrane of living cells. PLoS One. 2014;9(7):e102526.  https://doi.org/10.1371/journal.pone.0102526.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Ueda Y, Ogiso H, Sato M, Umezawa Y, Okazaki T, Kobayashi T. Asymmetrical diacylglycerol dynamics on the cytosolic and lumenal sides of a single endomembrane in living cells. Sci Rep. 2015;5:12960.  https://doi.org/10.1038/srep12960.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, et al. Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell. 2011;22(23):4647–56.  https://doi.org/10.1091/mbc.E11-01-0072.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Ni Q, Titov DV, Zhang J. Analyzing protein kinase dynamics in living cells with FRET reporters. Methods. 2006;40(3):279–86.  https://doi.org/10.1016/j.ymeth.2006.06.013.CrossRefPubMedGoogle Scholar
  196. 196.
    Miura H, Matsuda M, Aoki K. Development of a FRET biosensor with high specificity for Akt. Cell Struct Funct. 2014;39(1):9–20.CrossRefPubMedGoogle Scholar
  197. 197.
    Clapham DE. Calcium signaling. Cell. 2007;131(6):1047–58.  https://doi.org/10.1016/j.cell.2007.11.028.CrossRefPubMedGoogle Scholar
  198. 198.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997;388(6645):882–7.  https://doi.org/10.1038/42264.CrossRefPubMedGoogle Scholar
  199. 199.
    Miyawaki A, Griesbeck O, Heim R, Tsien RY. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A. 1999;96(5):2135–40.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Truong K, Sawano A, Mizuno H, Hama H, Tong KI, Mal TK, et al. FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol. 2001;8(12):1069–73.  https://doi.org/10.1038/nsb728.CrossRefPubMedGoogle Scholar
  201. 201.
    Osawa M, Tokumitsu H, Swindells MB, Kurihara H, Orita M, Shibanuma T, et al. A novel target recognition revealed by calmodulin in complex with Ca2+−calmodulin-dependent kinase kinase. Nat Struct Biol. 1999;6(9):819–24.  https://doi.org/10.1038/12271.CrossRefPubMedGoogle Scholar
  202. 202.
    Porumb T, Yau P, Harvey TS, Ikura M. A calmodulin-target peptide hybrid molecule with unique calcium-binding properties. Protein Eng. 1994;7(1):109–15.CrossRefPubMedGoogle Scholar
  203. 203.
    Zhang J, Ma Y, Taylor SS, Tsien RY. Genetically encoded reporters of protein kinase a activity reveal impact of substrate tethering. Proc Natl Acad Sci U S A. 2001;98(26):14997–5002.  https://doi.org/10.1073/pnas.211566798.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Allen MD, Zhang J. Subcellular dynamics of protein kinase a activity visualized by FRET-based reporters. Biochem Biophys Res Commun. 2006;348(2):716–21.  https://doi.org/10.1016/j.bbrc.2006.07.136.CrossRefPubMedGoogle Scholar
  205. 205.
    Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev. 2000;14(9):1027–47.PubMedGoogle Scholar
  206. 206.
    Shenoy SK, Lefkowitz RJ. Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J. 2003;375(Pt 3):503–15.  https://doi.org/10.1042/BJ20031076.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Giorgi C, Romagnoli A, Agnoletto C, Bergamelli L, Sorrentino G, Brini M, et al. Translocation of signalling proteins to the plasma membrane revealed by a new bioluminescent procedure. BMC Cell Biol. 2011;12(1):27.  https://doi.org/10.1186/1471-2121-12-27.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Marsault R, Murgia M, Pozzan T, Rizzuto R. Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells. EMBO J. 1997;16(7):1575–81.  https://doi.org/10.1093/emboj/16.7.1575.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Yu Z, Taylor JL, He Y, Ni J. Enlightenment on the aequorin-based platform for screening Arabidopsis stress sensory channels related to calcium signaling. Plant Signal Behav. 2015;10(11):e1057366.  https://doi.org/10.1080/15592324.2015.1057366.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Bakayan A, Domingo B, Vaquero CF, Peyrieras N, Llopis J. Fluorescent protein-photoprotein fusions and their applications in calcium imaging. Photochem Photobiol. 2017;93(2):448–65.  https://doi.org/10.1111/php.12682.CrossRefPubMedGoogle Scholar
  211. 211.
    von Degenfeld G, Wehrman TS, Hammer MM, Blau HM. A universal technology for monitoring G-protein-coupled receptor activation in vitro and noninvasively in live animals. FASEB J. 2007;21(14):3819–26.  https://doi.org/10.1096/fj.07-9597com.CrossRefGoogle Scholar
  212. 212.
    Yan YX, Boldt-Houle DM, Tillotson BP, Gee MA, D'Eon BJ, Chang XJ, et al. Cell-based high-throughput screening assay system for monitoring G protein-coupled receptor activation using beta-galactosidase enzyme complementation technology. J Biomol Screen. 2002;7(5):451–9.  https://doi.org/10.1177/108705702237677.CrossRefPubMedGoogle Scholar
  213. 213.
    Eishingdrelo H, Cai J, Weissensee P, Sharma P, Tocci MJ, Wright PS. A cell-based protein-protein interaction method using a permuted luciferase reporter. Curr Chem Genomics. 2011;5:122–8.  https://doi.org/10.2174/1875397301105010122.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Barnea G, Strapps W, Herrada G, Berman Y, Ong J, Kloss B, et al. The genetic design of signaling cascades to record receptor activation. Proc Natl Acad Sci U S A. 2008;105(1):64–9.  https://doi.org/10.1073/pnas.0710487105.CrossRefPubMedGoogle Scholar
  215. 215.
    Yan Y, Xu TH, Harikumar KG, Miller LJ, Melcher K, Xu HE. Detection of membrane protein interactions by cell-based tango assays. Bio Protoc. 2017;7(22):e2903.  https://doi.org/10.21769/BioProtoc.2903.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Kroeze WK, Sassano MF, Huang XP, Lansu K, McCorvy JD, Giguere PM, et al. PRESTO-tango as an open-source resource for interrogation of the druggable human GPCRome. Nat Struct Mol Biol. 2015;22(5):362–U328.  https://doi.org/10.1038/nsmb.3014.CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Littmann T, Ozawa T, Hoffmann C, Buschauer A, Bernhardt G. A split luciferase-based probe for quantitative proximal determination of Galphaq signalling in live cells. Sci Rep. 2018;8(1):17179.  https://doi.org/10.1038/s41598-018-35615-w.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, et al. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 2008;146(2):368–76.  https://doi.org/10.1104/pp.107.111740.CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci U S A. 2004;101(33):12288–93.  https://doi.org/10.1073/pnas.0404041101.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Misawa N, Kafi AK, Hattori M, Miura K, Masuda K, Ozawa T. Rapid and high-sensitivity cell-based assays of protein-protein interactions using split click beetle luciferase complementation: an approach to the study of G-protein-coupled receptors. Anal Chem. 2010;82(6):2552–60.  https://doi.org/10.1021/ac100104q.CrossRefPubMedGoogle Scholar
  221. 221.
    Cheng Z, Garvin D, Paguio A, Stecha P, Wood K, Fan F. Luciferase reporter assay system for deciphering GPCR pathways. Curr Chem Genomics. 2010;4:84–91.  https://doi.org/10.2174/1875397301004010084.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Herschman HR. Noninvasive imaging of reporter gene expression in living subjects. Adv Cancer Res. 2004;92:29–80.Google Scholar
  223. 223.
    Jiang T, Xing B, Rao J. Recent developments of biological reporter technology for detecting gene expression. Biotechnol Genet Eng Rev. 2008;25(1):41–75.  https://doi.org/10.5661/bger-25-41.CrossRefPubMedGoogle Scholar
  224. 224.
    Basu C, Kausch A, M Chandlee J. Use of β-glucuronidase reporter gene for gene expression analysis in turfgrasses. Biochem Biophys Res Commun. 2004;320:7–10.  https://doi.org/10.1016/j.bbrc.2004.05.128.CrossRefPubMedGoogle Scholar
  225. 225.
    Paguio A, Stecha P, Wood KV, Fan F. Improved dual-luciferase reporter assays for nuclear receptors. Curr Chem Genomics. 2010;4:43–9.  https://doi.org/10.2174/1875397301004010043.CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Fan F, Wood KV. Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol. 2007;5(1):127–36.  https://doi.org/10.1089/adt.2006.053.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dinesh Kankanamge
    • 1
  • Kasun Ratnayake
    • 1
  • Kanishka Senarath
    • 1
  • Mithila Tennakoon
    • 1
  • Elise Harmon
    • 1
  • Ajith Karunarathne
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryThe University of ToledoToledoUSA

Personalised recommendations