Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 14, pp 3081–3089 | Cite as

A facile and label-free ratiometric optical sensor for selective detection of norepinephrine by combining second-order scattering and fluorescence signals

  • Ying Zhang
  • Wang Ren
  • Yu Zhu Fan
  • Jiang Xue Dong
  • Hong Qun LuoEmail author
  • Nian Bing LiEmail author
Research Paper
  • 55 Downloads

Abstract

In this work, a facile and label-free ratiometric sensor is constructed for selective determination of norepinephrine (NE) by coupling second-order scattering (SOS) and fluorescence, two different and independent optical signals. Herein, polyethyleneimine (PEI) dilute solution medium shows an intensive SOS signal without any fluorescence response. Interestingly, NE can be selectively induced by PEI to emit bright fluorescence, and meanwhile causes an observable decrease in the SOS signal due to the interactions between NE and PEI. The simultaneous variation of the two independent signals can be used for ratiometric sensing of NE. Under the optimal conditions, the resultant ratiometric sensor displays high sensitivity and selectivity toward NE by simultaneously monitoring fluorescence and SOS signals with the same excitation wavelength. The proposed sensor exhibits a good linear relationship versus NE concentration in the range of 10.0 nM–45.0 μM with a detection limit of 2.0 nM (S/N = 3) and has been successfully applied to the determination of NE in real samples without the use of any extra reagent. The combination of fluorescence and SOS signals provides a new scheme for ratiometric sensor design, greatly simplifying experimental procedure and effectively enhancing detection accuracy. Moreover, the proposed analytical strategy further broadens the application of dilute solutions of polymers in research into optical sensor and green analytical chemistry.

Graphical abstract

Keywords

Ratiometric sensor Turn-on fluorescence Light scattering Norepinephrine Polyethyleneimine 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (No. 21675131), the Natural Science Foundation of Chongqing (No. CSTC-2015jcyjB50001), Sichuan University of Science & Engineering (2016RCL26), the Project of Zigong City (2016XC12), the Scientific Research Fund of Sichuan Provincial Education Department (16ZB0256), the Sichuan 1000 Talents Program (No. 978), and the Undergraduate Innovation Foundation of Sichuan Province (201810622052).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of Southwest University, and written informed consent was obtained from all individuals participating in the study prior to the collection of the human urine samples.

Supplementary material

216_2019_1762_MOESM1_ESM.pdf (2.1 mb)
ESM 1 (PDF 2118 kb)

References

  1. 1.
    Hettie KS, Liu X, Gillis KD, Glass TE. Selective catecholamine recognition with NeuroSensor 521: a fluorescent sensor for the visualization of norepinephrine in fixed and live cells. ACS Chem Neurosci. 2013;4:918–23.CrossRefGoogle Scholar
  2. 2.
    Chen H, Sippel RS, O’dorisio MS, Vinik AI, Lloyd RV, Pacak K. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas. 2010;39:775–83.CrossRefGoogle Scholar
  3. 3.
    Mazloum-Ardakani M, Sheikh-Mohseni MA, Abdollahi-Alibeik M, Benvidi A. Electrochemical sensor for simultaneous determination of norepinephrine, paracetamol and folic acid by a nanostructured mesoporous material. Sensors Actuators B. 2012;171:380–6.CrossRefGoogle Scholar
  4. 4.
    Kulma A, Szopa J. Catecholamines are active compounds in plants. Plant Sci. 2007;172:433–40.CrossRefGoogle Scholar
  5. 5.
    Alhendal A, Mengis S, Matthews J, Malik A. Nonhydrolytic sol-gel approach to facile creation of surface-bonded zirconia organic-inorganic hybrid coatings for sample preparation. Ι. Capillary microextraction of catecholamine neurotransmitters. J Chromatogr A. 2016;1468:23–32.CrossRefGoogle Scholar
  6. 6.
    Baranwal A, Chandra P. Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron. 2018;121:137–52.CrossRefGoogle Scholar
  7. 7.
    He M, Wang C, Wei Y. Selective enrichment and determination of monoamine neurotransmitters by Cu (II) immobilized magnetic solid phase extraction coupled with high-performance liquid chromatography-fluorescence detection. Talanta. 2016;147:437–44.CrossRefGoogle Scholar
  8. 8.
    Naccarato A, Gionfriddo E, Sindona G, Tagarelli A. Development of a simple and rapid solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine. Anal Chim Acta. 2014;810:17–24.CrossRefGoogle Scholar
  9. 9.
    Zhang Q, Gong M. On-line preconcentration of fluorescent derivatives of catecholamines in cerebrospinal fluid using flow-gated capillary electrophoresis. J Chromatogr A. 2016;1450:112–20.CrossRefGoogle Scholar
  10. 10.
    Townsend AD, Wilken GH, Mitchell KK, Martin RS, Macarthur H. Simultaneous analysis of vascular norepinephrine and ATP release using an integrated microfluidic system. J Neurosci Methods. 2016;266:68–77.CrossRefGoogle Scholar
  11. 11.
    Kruss S, Landry MP, Vander Ende E, Lima BM, Reuel NF, Zhang J, et al. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J Am Chem Soc. 2014;136:713–24.CrossRefGoogle Scholar
  12. 12.
    Jeon SJ, Kwak SY, Yim D, Ju JM, Kim JH. Chemically-modulated photoluminescence of graphene oxide for selective detection of neurotransmitter by “turn-on” response. J Am Chem Soc. 2014;136:10842–5.CrossRefGoogle Scholar
  13. 13.
    Wei F, Wu Y, Xu G, Gao Y, Yang J, Liu L, et al. Molecularly imprinted polymer based on CdTe@SiO2 quantum dots as a fluorescent sensor for the recognition of norepinephrine. Analyst. 2014;139:5785–92.CrossRefGoogle Scholar
  14. 14.
    Huang L, Liu M, Huang H, Wen Y, Zhang X, Wei Y. Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules. 2018;19:1858–68.CrossRefGoogle Scholar
  15. 15.
    Nejad MAF, Ghasemi F, Hormozi-Nezhad MR. A wide-color-varying ratiometric nanoprobe for detection of norepinephrine in urine samples. Anal Chim Acta. 2018;1039:124–31.CrossRefGoogle Scholar
  16. 16.
    Gao ZF, Li TT, Xu XL, Liu YY, Luo HQ, Li NB. Green light-emitting polyepinephrine-based fluorescent organic dots and its application in intracellular metal ions sensing. Biosens Bioelectron. 2016;83:134–41.CrossRefGoogle Scholar
  17. 17.
    Liu M, Ji J, Zhang X, Zhang X, Yang B, Deng F, et al. Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J Mater Chem B. 2015;3:3476–82.CrossRefGoogle Scholar
  18. 18.
    Zhao C, Zuo F, Liao Z, Qin Z, Du S, Zhao Z. Mussel-inspired one-pot synthesis of a fluorescent and water-soluble polydopamine-polyethyleneimine copolymer. Macromol Rapid Commun. 2015;36:909–15.CrossRefGoogle Scholar
  19. 19.
    Tedjo W, Nejad JE, Feeny R, Yang L, Henry CS, Tobet S, et al. Electrochemical biosensor system using a CMOS microelectrode array provides high spatially and temporally resolved images. Biosens Bioelectron. 2018;114:78–88.CrossRefGoogle Scholar
  20. 20.
    Hu M, Fritsch I. Redox cycling behavior of individual and binary mixtures of catecholamines at gold microband electrode arrays. Anal Chem. 2015;87:2029–32.CrossRefGoogle Scholar
  21. 21.
    Bhardwaj S, Singh AK. Visual & reversible sensing of cyanide in real samples by an effective ratiometric colorimetric probe & logic gate application. J Hazard Mater. 2015;296:54–60.CrossRefGoogle Scholar
  22. 22.
    Wang X, Yu J, Kang Q, Shen D, Li J, Chen L. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin. Biosens Bioelectron. 2016;77:624–30.CrossRefGoogle Scholar
  23. 23.
    Wang H, Sun Y, Li H, Yue W, Kang Q, Shen D. A smartphone-based ratiometric resonance light scattering device for field analysis of Pb2+ in river water samples and immunoassay of alpha fetoprotein using PbS nanoparticles as signal tag. Sensors Actuators B Chem. 2018;271:358–66.CrossRefGoogle Scholar
  24. 24.
    Wu Y, Xiao F, Wu Z, Yu R. Novel aptasensor platform based on ratiometric surface-enhanced raman spectroscopy. Anal Chem. 2017;89:2852–8.CrossRefGoogle Scholar
  25. 25.
    Liu X, Yan Z, Sun Y, Ren J, Qu X. A label-free ratiometric electrochemical DNA sensor for monitoring intracellular redox homeostasis. Chem Commun. 2017;53:6215–8.CrossRefGoogle Scholar
  26. 26.
    Shao K, Wang B, Nie A, Ye S, Ma J, Li Z, et al. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosens Bioelectron. 2018;118:160–6.CrossRefGoogle Scholar
  27. 27.
    Liao QG, Li YF, Huang CZ. A light scattering and fluorescence emission coupled ratiometry using the interaction of functional CdS quantum dots with aminoglycoside antibiotics as a model system. Talanta. 2007;71:567–72.CrossRefGoogle Scholar
  28. 28.
    Li NB, Liu SP, Luo HQ. Frequency doubling scattering and second-order scattering technology as novel methods for the determination of the inclusion constant of procaine hydrochloride to β-cyclodextrin. Anal Chim Acta. 2002;472:89–98.CrossRefGoogle Scholar
  29. 29.
    Mandyla SP, Tsogas GZ, Vlessidis AG, Giokas DL. Determination of gold nanoparticles in environmental water samples by second-order optical scattering using dithiotreitol-functionalized CdS quantum dots after cloud point extraction. J Hazard Mater. 2017;323:67–74.CrossRefGoogle Scholar
  30. 30.
    Liu SG, Li N, Han L, Li LJ, Li NB, Luo HQ. Size-dependent modulation of fluorescence and light scattering: a new strategy for development of ratiometric sensing. Mater Horiz. 2018;5:454–60.CrossRefGoogle Scholar
  31. 31.
    Li H, Zhao Y, Chen Z, Xu D. Silver enhanced ratiometric nanosensor based on two adjustable fluorescence resonance energy transfer modes for quantitative protein sensing. Biosens Bioelectron. 2017;87:428–32.CrossRefGoogle Scholar
  32. 32.
    Liu J, Qian Y. A novel naphthalimide-rhodamine dye: intramolecular fluorescence resonance energy transfer and ratiometric chemodosimeter for Hg2+ and Fe3+. Dyes Pigments. 2017;136:782–90.CrossRefGoogle Scholar
  33. 33.
    Ma F, Wang D, Zhang Y, Li M, Qing W, Tikkanen-Kaukanen C, et al. Characterisation of the mucilage polysaccharides from Dioscorea opposita Thunb. with enzymatic hydrolysis. Food Chem. 2018;245:13–21.CrossRefGoogle Scholar
  34. 34.
    Deng YN, Gao Q, Ma J, Wang C, Wei Y. Preparation of a boronate affinity material with ultrahigh binding capacity for cis-diols by grafting polymer brush from polydopamine-coated magnetized graphene oxide. Microchim Acta. 2018;185:189–96.CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Ren W, Fan YZ, Dong JX, Zhang H, Luo HQ, et al. Label-free fluorescent discrimination and detection of epinephrine and dopamine based on bioinspired in situ copolymers and excitation wavelength switch. Anal Chim Acta. 2019;1054:167–75.Google Scholar
  36. 36.
    Dong JX, Gao ZF, Zhang Y, Li BL, Li NB, Luo HQ. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction. Biosens Bioelectron. 2017;91:155–61.CrossRefGoogle Scholar
  37. 37.
    He MJ, Chen WX, Dong XX. Polymer physics. Revised edition. Shanghai: Fudan University press; 2005.Google Scholar
  38. 38.
    Lv Y, Yang SJ, Du Y, Hao-Cheng Y, Xu ZK. Co-deposition kinetics of polydopamine/polyethyleneimine coatings: effects of solution composition and substrate surface. Langmuir. 2018;34:13123–31.CrossRefGoogle Scholar
  39. 39.
    Kang SM, Rho J, Choi IS, Messersmith PB, Lee H. Norepinephrine: material-independent, multifunctional surface modification reagent. J Am Chem Soc. 2009;131:13224–5.CrossRefGoogle Scholar
  40. 40.
    Hong S, Kim J, Na YS, Park J, Kim S, Singha K, et al. Poly (norepinephrine): ultrasmooth material-independent surface chemistry and nanodepot for nitric oxide. Angew Chem Int Ed. 2013;52:9187–91.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Eco–environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina
  2. 2.College of Chemistry and Environmental EngineeringSichuan University of Science and EngineeringZigongChina

Personalised recommendations