Advertisement

High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices

  • Chen Wang
  • Yang Wang
  • Yue Zhou
  • Zeng-Qiang Wu
  • Xing-Hua XiaEmail author
Review
  • 34 Downloads
Part of the following topical collections:
  1. New Insights into Analytical Science in China

Abstract

Micro-/nanofluidics has received considerable attention over the past two decades, which allows efficient biomolecule trapping and preconcentration due to ion concentration polarization (ICP) within nanostructures. The rich scientific content related to ICP has been widely exploited in different applications including protein concentration, biomolecules sensing and detection, cell analysis, and water purification. Compared to pure microfluidic devices, micro-/nanofluidic devices show a highly efficient sample enrichment capacity and nonlinear electrokinetic flow feature. These two unique characterizations make the micro-/nanofluidic systems promising in high-performance bioanalysis. This review provides a comprehensive description of the ICP phenomenon and its applications in bioanalysis. Perspectives are also provided for future developments and directions of this research field.

Keywords

Micro-/nanofluidics Ionic concentration polarization (ICP) Preconcentration Nonlinear electrokinetic flow Bioanalysis 

Notes

Funding

This work was supported by the grants from the National Key R&D Program of China (2017YFA0700500), the National Natural Science Foundation of China (21874155, 21635004, 21575163), the Qing-Lan Project of Jiangsu Province (2019), and “Double First-Class” University project (CPU2018GY25).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ansari MIH, Hassan S, Qurashi A, Khanday FA. Microfluidic-integrated DNA nanobiosensors. Biosens Bioelectron. 2016;85:247–60.Google Scholar
  2. 2.
    Kim SJ, Song YA, Han J. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chem Soc Rev. 2010;39(3):912–22.Google Scholar
  3. 3.
    Lee JH, Song YA, Han J. Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip. 2008;8(4):596–601.Google Scholar
  4. 4.
    Valenca J, Jogi M, Wagterveld RM, Karatay E, Wood JA, Lammertink RGH. Confined electroconvective vortices at structured ion exchange membranes. Langmuir. 2018;34(7):2455–63.Google Scholar
  5. 5.
    Wang C, Ouyang J, Wang YY, Ye DK, Xia XH. Sensitive assay of protease activity on a micro/nanofluidics preconcentrator fused with the fluorescence resonance energy transfer detection technique. Anal Chem. 2014;86(28):3216–21.Google Scholar
  6. 6.
    Wang YC, Stevens AL, Han J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem. 2005;77(14):4293–9.Google Scholar
  7. 7.
    Plecis A, Pallandre A, Haghiri-Gosnet A. Ionic and mass transport in micro-nanofluidic devices: a matter of volumic surface charge. Lab Chip. 2011;11:795–804.Google Scholar
  8. 8.
    Hua N, Aic Y, Qian SZ. Field effect control of electrokinetic transport in micro/nanofluidics. Sensors Actuators B Chem. 2012;161:1150–67.Google Scholar
  9. 9.
    Santra TS, Tseng FG. Recent trends on micro/nanofluidic single cell electroporation. Micromachines. 2013;4:333–56.Google Scholar
  10. 10.
    Hibara A, Fukuyama M, Chung M, Priest C, Proskurnin MA. Interfacial phenomena and fluid control in micro/nanofluidics. Anal Sci. 2016;32:11–21.Google Scholar
  11. 11.
    Rems L, Kawale D, Lee LJ, Boukany PE. Flow of DNA in micro/nanofluidics: from fundamentals to applications. Biomicrofluidics. 2016;10:043403.Google Scholar
  12. 12.
    Chen XY, Zhang SZ, Zhang L, Yao Z, Chen XD, Zheng Y, et al. Applications and theory of electrokinetic enrichment in micro-nanofluidic chips. Biomed Microdevices. 2017;19:19.Google Scholar
  13. 13.
    Fu LM, Hou HH, Chiu PH, Yang RJ. Sample preconcentration from dilute solutions on micro/nanofluidic platforms: a review. Electrophoresis. 2018;39:289–310.Google Scholar
  14. 14.
    Chun HG, Chung TD, Ramsey JM. High yield sample preconcentration using a highly ion-conductive charge-selective polymer. Anal Chem. 2010;82(14):6287–92.Google Scholar
  15. 15.
    Chun H. Electroosmotic effects on sample concentration at the interface of a micro/nanochannel. Anal Chem. 2017;89(17):8924–30.Google Scholar
  16. 16.
    Chun H. Electropreconcentration-induced local pH change. Electrophoresis. 2018;39(3):521–5.Google Scholar
  17. 17.
    Kim M, Kim T. Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration. Analyst. 2013;138(20):6007–15.Google Scholar
  18. 18.
    Dziomba S, Araya-Farias M, Smadj C, Taverna M, Carbonnier B, Tran NT. Solid supports for extraction and preconcentration of proteins and peptides in microfluidic devices: a review. Anal Chim Acta. 2017;955:1–26.Google Scholar
  19. 19.
    Yamamoto S, Okada F, Kinoshita M, Suzuki S. On-line microchip electrophoresis-mediated preconcentration of cationic compounds utilizing cationic polyacrylamide gels fabricated by in situ photopolymerization. Analyst. 2018;143(18):4429–35.Google Scholar
  20. 20.
    Chun H. Development of a low flow-resistive charged nanoporous membrane in a microchip for fast electropreconcentration. Electrophoresis. 2018;39(17):2181–7.Google Scholar
  21. 21.
    Kim KB, Han JH, Choi H, Kim HC, Chung TD. Dynamic preconcentration of gold nanoparticles for surface-enhanced Raman scattering in a microfluidic system. Small. 2012;8(3):378–83.Google Scholar
  22. 22.
    Wu ZY, Fang F, He YQ, Li TT, Li JJ, Tian L. Flexible and efficient eletrokinetic stacking of DNA and proteins at an HF etched porous junction on a fused silica capillary. Anal Chem. 2012;84(16):7085–91.Google Scholar
  23. 23.
    Chen YY, Chiu PH, Weng CH, Yang RJ. Preconcentration of diluted mixed-species samples following separation and collection in a micro-nanofluidic device. Biomicrofluidics. 2016;10(1):014119.Google Scholar
  24. 24.
    Pu Q, Yun J, Temkin H, Liu S. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 2014;4(6):1099–103.Google Scholar
  25. 25.
    Yu Q, Silber-Li Z. Measurements of the ion-depletion zone evolution in a micro/nano-channel. Microfluid Nanofluid. 2011;11(5):623–31.Google Scholar
  26. 26.
    Kim SM, Burns MA, Hasselbrink EF. Electrokinetic protein preconcentration using a simple glass/poly (dimethylsiloxane) microfluidic chip. Anal Chem. 2006;78(14):4779–85.Google Scholar
  27. 27.
    Plecis A, Schoch RB, Renaud P. Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 2005;5(6):1147–55.Google Scholar
  28. 28.
    Yu H, Lu Y, Zhou YG, Wang FB, He FY, Xia XH. A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing. Lab Chip. 2008;8(9):1496–501.Google Scholar
  29. 29.
    Wang C, Ouyang J, Gao HL, Chen HW, Xu JJ, Xia XH. UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis. Talanta. 2011;85(1):298–303.Google Scholar
  30. 30.
    Mai J, Miller H, Hatch AV. Spatiotemporal mapping of concentration polarization induced pH changes at nanoconstrictions. ACS Nano. 2012;6(11):10206–15.Google Scholar
  31. 31.
    Wang YC, Han J. Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip. 2008;8(3):392–4.Google Scholar
  32. 32.
    Choi E, Kwon K, Lee SJ, Kim D, Park J. In-situ self-assembled colloidal crystals within microchannels using one step stamping for direct seawater desalination by ion concentration polarization. IEEE MEMS. 2012;59:1213–5.Google Scholar
  33. 33.
    Choi E, Kwon K, Lee SJ, Kim D, Park J. Non-equilibrium electrokinetic micromixer with 3D nanochannel networks. Lab Chip. 2015;15(8):1794–8.Google Scholar
  34. 34.
    Syed A, Mangano L, Mao P, Han J, Song YA. Creating sub-50 nm nanofluidic junctions in a PDMS microchip via self-assembly process of colloidal silica beads for electrokinetic concentration of biomolecules. Lab Chip. 2014;14(23):4455–60.Google Scholar
  35. 35.
    Hu YL, Lu Y, Wu ZQ, Wang C, Li Y, Xu JJ, et al. Interconnected ordered nanoporous networks of colloidal crystals integrated on a microfluidic chip for highly efficient protein concentration. Electrophoresis. 2011;32(23):3424–30.Google Scholar
  36. 36.
    Choi E, Kwon K, Kim D, Park J. An electrokinetic study on tunable 3D nanochannel networks constructed by spatially controlled nanoparticle assembly. Lab Chip. 2015;15(2):512–23.Google Scholar
  37. 37.
    Kim SJ, Wang YC, Lee JH, Jang HC, Han JY. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett. 2007;99(4):044501.Google Scholar
  38. 38.
    Kim SJ, Li LD, Han JY. Amplified electrokinetic response by concentration polarization near nanofluidic channel. Langmuir. 2009;25(13):7759–65.Google Scholar
  39. 39.
    Yossifon G, Chang HC. Selection of nonequilibrium overlimiting currents: universal depletion layer formation dynamics and vortex instability. Phys Rev Lett. 2008;101(25):254501.Google Scholar
  40. 40.
    Yossifon G, Chang YC, Chang HC. Rectification, gating voltage, and interchannel communication of nanoslot arrays due to asymmetric entrance space charge polarization. Phys Rev Lett. 2009;103(15):154502.Google Scholar
  41. 41.
    Jin XZ, Joseph S, Gatimu EN, Bohn PW, Aluru NR. Induced electrokinetic transport in micro-nanofluidic interconnect devices. Langmuir. 2007;23(26):13209–22.Google Scholar
  42. 42.
    Dukhin SS. Electrokinetic phenomena of the second kind and their applications. Adv Colloid Interf Sci. 1991;35:173–96.Google Scholar
  43. 43.
    Mishchuk NA, Takhistov PV. Electroosmosis of the second kind. Colloid Surf A. 1995;95(2–3):119–31.Google Scholar
  44. 44.
    Mishchuk NA. Concentration polarization of interface and non-linear electrokinetic phenomena. Adv Colloid Interf Sci. 2010;160(1–2):16–39.Google Scholar
  45. 45.
    Ben YX, Demekhin EA, Chang HC. Nonlinear electrokinetics and “superfast” electrophoresis. J Colloid Interface Sci. 2004;276(2):483–97.Google Scholar
  46. 46.
    Zaltzman B, Rubinstein I. Electro-osmotic slip and electroconvective instability. J Fluid Mech. 2007;579:173–226.Google Scholar
  47. 47.
    Yaroshchuk A, Zholkovskiy E, Pogodin S, Baulin V. Coupled concentration polarization and electroosmotic circulation near micro/nanointerfaces: Taylor-Aris model of hydrodynamic dispersion and limits of its applicability. Langmuir. 2011;27(18):11710–21.Google Scholar
  48. 48.
    Wang C, Shi Y, Wang J, Pang J, Xia XH. Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching. ACS Appl Mater Interface. 2015;7(12):6835–41.Google Scholar
  49. 49.
    Lee JH, Song YA, Tannenbaum SR, Han J. Increase of reaction rate and sensitivity of low-abundance enzyme assay using micro/nanofluidic preconcentration chip. Anal Chem. 2008;80(9):3198–204.Google Scholar
  50. 50.
    Sarkar A, Han J. Non-linear and linear enhancement of enzymatic reaction kinetics using a biomolecule concentrator. Lab Chip. 2011;11(15):2569–76.Google Scholar
  51. 51.
    Lee JH, Han J. Concentration-enhanced rapid detection of human chorionic gonadotropin as a tumor marker using a nanofluidic preconcentrator. Microfluid Nanofluid. 2010;9(4–5):973–9.Google Scholar
  52. 52.
    Kwak R, Kim SJ, Han J. Continuous-flow biomolecule and cell concentrator by ion concentration polarization. Anal Chem. 2011;83(19):7348–55.Google Scholar
  53. 53.
    Lee JH, Cosgrove BD, Lauffenburger DA, Han J. Microfluidic concentration-enhanced cellular kinase activity assay. J Am Chem Soc. 2009;131(30):10340–1.Google Scholar
  54. 54.
    Zeng Y, Harrison DJ. Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal Chem. 2007;79(6):2289–95.Google Scholar
  55. 55.
    Lee SJ, Kim D. Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena. Microfluid Nanofluid. 2012;12(6):897–906.Google Scholar
  56. 56.
    Kim SJ, Ko SH, Kang KH, Han J. Direct seawater desalination by ion concentration polarization. Nat Nanotechnol. 2010;5(4):297–301.Google Scholar
  57. 57.
    Kim P, Kim SJ, Han J, Suh KY. Stabilization of ion concentration polarization using a heterogeneous nanoporous junction. Nano Lett. 2010;10(1):16–23.Google Scholar
  58. 58.
    Ko SH, Song YA, Kim SJ, Kim M, Han J, Kang KH. Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab Chip. 2012;12(21):4472–82.Google Scholar
  59. 59.
    Ko SH, Chandra D, Ouyang W, Kwon T, Karande P, Han J. Nanofluidic device for continuous multiparameter quality assurance of biologics. Nat Nanotechnol. 2017;12(8):804–12.Google Scholar
  60. 60.
    Chen Z, Wang YS, Wang W, Li ZH. Nanofluidic electrokinetics in nanoparticle crystal. Appl Phys Lett. 2009;95(10):102105.Google Scholar
  61. 61.
    Ouyang W, Han J, Wang W. Enabling electrical biomolecular detection in high ionic concentrations and enhancement of the detection limit thereof by coupling a nanofluidic crystal with reconfigurable ion concentration polarization. Lab Chip. 2017;17(22):3772–84.Google Scholar
  62. 62.
    Zhao WD, Wang BJ, Wang W. Biochemical sensing by nanofluidic crystal in a confined space. Lab Chip. 2016;16(11):2050–8.Google Scholar
  63. 63.
    Gong MM, Sinton D. Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev. 2017;117(12):8447–80.Google Scholar
  64. 64.
    Yang YY, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS. Paper-based microfluidic devices: emerging themes and applications. Anal Chem. 2017;89(1):71–91.Google Scholar
  65. 65.
    Song YZ, Zhang XX, Liu JJ, Fang F, Wu ZY. Electrokinetic stacking of electrically neutral analytes with paper-based analytical device. Talanta. 2018;182:247–52.Google Scholar
  66. 66.
    Gong MM, Nosrati R, San Gabriel MC, Zini A, Sinton D. Direct DNA analysis with paper-based ion concentration polarization. J Am Chem Soc. 2015;137(43):13913–9.Google Scholar
  67. 67.
    Yeh SH, Chou KH, Yang RJ. Sample pre-concentration with high enrichment factors at a fixed location in paper-based microfluidic devices. Lab Chip. 2016;16(5):925–31.Google Scholar
  68. 68.
    Hong S, Kwak R, Kim W. Paper-based flow fractionation system applicable to preconcentration and field-flow separation. Anal Chem. 2016;88(3):1682–7.Google Scholar
  69. 69.
    Han SI, Hwang KS, Kwak R, Lee JH. Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization. Lab Chip. 2016;16(12):2219–27.Google Scholar
  70. 70.
    Yang RJ, Pu HH, Wang HL. Ion concentration polarization on paper-based microfluidic devices and its application to preconcentrate dilute sample solutions. Biomicrofluid. 2015;9(1):014122.Google Scholar
  71. 71.
    Gong MM, Zhang P, MacDonald BD, Sinton D. Nanoporous membranes enable concentration and transport in fully wet paper-based assays. Anal Chem. 2014;86(16):8090–7.Google Scholar
  72. 72.
    Li X, Luo L, Crooks RM. Faradaic ion concentration polarization on a paper fluidic platform. Anal Chem. 2017;89(7):4294–300.Google Scholar
  73. 73.
    Phana DT, Shaeghb SAM, Yanga C, Nguyenc NT. Sample concentration in a microfluidic paper-based analytical device using ion concentration polarization. Sensors Actuators B Chem. 2016;222:735–40.Google Scholar
  74. 74.
    Gao H, Xie MR, Liu JJ, Fang F, Wu ZY. Electrokinetic stacking on paper-based analytical device by ion concentration polarization with ion exchange membrane interface. Microfluid Nanofluid. 2018;22:50.Google Scholar
  75. 75.
    Wang C, Li SJ, Wu ZQ, Xu JJ, Chen HY, Xia XH. Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device. Lab Chip. 2010;10(5):639–46.Google Scholar
  76. 76.
    Wang C, Sheng ZH, Ouyang J, Xu JJ, Chen HY, Xia XH. Nanoconfinement effects: glucose oxidase reaction kinetics in nanofluidics. Chem Phys Chem. 2012;13(3):762–8.Google Scholar
  77. 77.
    Wang C, Ouyang J, Ye DK, Xu JJ, Chen HY, Xia XH. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip. Lab Chip. 2012;12(15):2664–71.Google Scholar
  78. 78.
    Wang C, Ye DK, Wang YY, Lu T, Xia XH. Insights into the “free state”enzyme reaction kinetics in nanoconfinement. Lab Chip. 2013;13(8):1546–53.Google Scholar
  79. 79.
    Wang C, Xu JJ, Chen HY, Xia XH. Mass transport in nanofluidic devices. Sci China Chem. 2012;55(4):453–68.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chen Wang
    • 1
    • 2
  • Yang Wang
    • 1
  • Yue Zhou
    • 1
  • Zeng-Qiang Wu
    • 1
  • Xing-Hua Xia
    • 1
    Email author
  1. 1.State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
  2. 2.Key Laboratory of Biomedical Functional Materials, School of ScienceChina Pharmaceutical UniversityNanjingChina

Personalised recommendations