Analytical and Bioanalytical Chemistry

, Volume 411, Issue 13, pp 2905–2914 | Cite as

Monocrotophos detection with a bienzyme biosensor based on ionic-liquid-modified carbon nanotubes

  • Bin ZouEmail author
  • Yanhong Chu
  • Jiaojiao XiaEmail author
Research Paper


Acetylcholinesterase (AChE) biosensor technology is widely applied in the detection of organophosphate pesticides in agricultural production via the inhibition of AChE activity by organophosphates. However, the AChE electrode has some drawbacks, such as low stability and high overpotential. Combining the advantages of multiwalled carbon nanotubes (MWCNTs) and ionic liquids, we constructed a novel bienzyme electrode [Cl/iron porphyrin (FePP)-modified MWCNTs/AChE/glassy carbon electrode], which included AChE and mimetic oxidase FePP. In this electrode, FePP is covalently bound to the AChE carrier via ionic liquid for increased electrode sensitivity and stability. Under optimal conditions, this novel biosensor has a monocrotophos detection limit of 3.2 × 10–11 mol/L and good recovery of 89–104%. After 5 weeks of storage at 4 °C, the oxidation current was 97.8% of its original value. The biosensor has high stability and sensitivity for monocrotophos detection and is a promising device for monitoring food safety.

Graphical abstract

The complete synthesis process of Cl/FePP–MWCNTs/AChE/GCE


Acetylcholinesterase Mimetic oxidase Modification Ionic liquids Monocrotophos 



The work was funded by the National Natural Science Foundation of China (no. 21406093), the Natural Science Foundation of Jiangsu Province (no. BK20140529), the Key University Science Research Project of Jiangsu Province (no. 14KJB530001), the China Postdoctoral Science Foundation (no. 2014M550271), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with ethical standards

Conflict of interest

The authors declare no that they have no competing interests.

Supplementary material

216_2019_1743_MOESM1_ESM.pdf (896 kb)
ESM 1 (PDF 896 kb)


  1. 1.
    Tan MJ, Hong ZY, Chang MH, Liu CC, Cheng HF, Loh XJ. Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides. Biosens Bioelectron. 2017;96:167–72.CrossRefGoogle Scholar
  2. 2.
    Mendieta-Reyes NE, Díaz-García AK, Gómez R. Simultaneous electrocatalytic CO2 reduction and enhanced electrochromic effect at WO3 nanostructured electrodes in acetonitrile. ACS Catal. 2018;8:1903–12.CrossRefGoogle Scholar
  3. 3.
    Ragno D, Carmine GD, Brandolese A, Bortolini O, Giovannini PP, Massi A. Immobilization of privileged triazolium carbene catalyst for batch and flow stereoselective umpolung processes. ACS Catal. 2017;7:6365–75.CrossRefGoogle Scholar
  4. 4.
    Gong J, Wang X, Li X, Wang K. Highly sensitive visible light activated photoelectrochemical biosensing of organophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays. Biosens Bioelectron. 2012;38:43–9.CrossRefGoogle Scholar
  5. 5.
    Cui HF, Wu WW, Li MM, Song X, Lv Y, Zhang TT. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens Bioelectron. 2018;99:223–9.CrossRefGoogle Scholar
  6. 6.
    Sgobbi LF, Sas M. Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosens Bioelectron. 2017;100:290–7.CrossRefGoogle Scholar
  7. 7.
    Zheng Q, Yu Y, Fan K, Ji F, Wu J, Ying Y. A nano-silver enzyme electrode for organophosphorus pesticide detection. Anal Bioanal Chem. 2016;408:1–9.CrossRefGoogle Scholar
  8. 8.
    Tran T, Mulchandani A. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. Trends Anal Chem. 2016;79:222–32.CrossRefGoogle Scholar
  9. 9.
    Ahmad R, Khare SK. Immobilization of aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresour Technol. 2017;252:72–5.CrossRefGoogle Scholar
  10. 10.
    Neto SA, Silva RGD, Milton RD, Minteer SD, Andrade ARD. Hybrid bioelectrocatalytic reduction of oxygen at anthracene-modified multi-walled carbon nanotubes decorated with Ni90Pd10 nanoparticles. Electrochim Acta. 2017;251:195–202.CrossRefGoogle Scholar
  11. 11.
    Giroud F, Sawada K, Taya M, Cosnier S. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O2 biofuel cells. Biosens Bioelectron. 2017;87:957–63.CrossRefGoogle Scholar
  12. 12.
    Chen B, Wang Y, Li C, Fu L, Liu X, Zhu Y. A Cr2O3/MWCNTs composite as a superior electrode material for supercapacitor. RSC Adv. 2017;7:25019–24.CrossRefGoogle Scholar
  13. 13.
    Kaur N, Thakur H, Prabhakar N. Conducting polymer and multi-walled carbon nanotubes nanocomposites based amperometric biosensor for detection of organophosphate. J Electroanal Chem. 2016;775:121–8.CrossRefGoogle Scholar
  14. 14.
    Yu G, Wu W, Zhao Q, Wei X, Lu Q. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens Bioelectron. 2015;68:288–94.CrossRefGoogle Scholar
  15. 15.
    Manoj D, Theyagarajan K, Saravanakumar D, Senthilkumar S, Thenmozhi K. Aldehyde functionalized ionic liquid on electrochemically reduced graphene oxide as a versatile platform for covalent immobilization of biomolecules and biosensing. Biosens Bioelectron. 2018;103:104–12.CrossRefGoogle Scholar
  16. 16.
    Gholivand MB, Karimian N, Torkashvand M. A highly sensitive electrochemical OPs biosensor based on electrodeposition of Au–Pd bimetallic nanoparticle onto functionalized graphene modified glassy carbon electrode. Anal Methods. 2015;7:3903–11.CrossRefGoogle Scholar
  17. 17.
    Horiuchi T, Torimitsu K, Yamamoto K, Niwa O. On-line flow sensor for measuring acetylcholine combined with microdialysis sampling probe. Electroanalysis. 2010;9:912–6.CrossRefGoogle Scholar
  18. 18.
    Zhou Y, Huang X, Zhang W, Ji Y, Chen R, Xiong Y. Multi-branched gold nanoflower-embedded iron porphyrin for colorimetric immunosensor. Biosens Bioelectron. 2017;102:9–16.CrossRefGoogle Scholar
  19. 19.
    Ji HB, Yuan QL, Zhou XT, Pei LX, Wang LF. Highly efficient selective oxidation of alcohols to carbonyl compounds catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen. Bioorg Med Chem Lett. 2007;17:6364–8.Google Scholar
  20. 20.
    Ren TZ, Yuan ZY, Su BL. Encapsulation of direct blue dye into mesoporous silica-based materials. Colloids Surf A Physicochem Eng Asp. 2007;300:79–87.CrossRefGoogle Scholar
  21. 21.
    Carrasco PM, Montes S, García I, Borghei M, Jiang H, Odriozola I. High-concentration aqueous dispersions of graphene produced by exfoliation of graphite using cellulose nanocrystals. Carbon. 2014;70:157–63.CrossRefGoogle Scholar
  22. 22.
    Gao L, Deng K, Zheng J, Liu B, Zhang Z. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin. Chem Eng J. 2015;270:444–9.CrossRefGoogle Scholar
  23. 23.
    Cui HF, Wu WW, Li MM, Song X, Lv Y, Zhang TT. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens Bioelectron. 2017;99:223–9.CrossRefGoogle Scholar
  24. 24.
    Bidari A, Ganjali MR, Norouzi P. Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid-liquid microextraction. Food Chem. 2011;126:1840–4.CrossRefGoogle Scholar
  25. 25.
    Wang F, Ma S, Si Y, Dong L, Wang X. Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water. Carbon. 2017;114:671–8.CrossRefGoogle Scholar
  26. 26.
    Uwimbabazi E, Mukasekuru MR, Sun X. Glucose biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes-chitosan for the determination of beef freshness. Food Anal Methods. 2017;10:1–10.CrossRefGoogle Scholar
  27. 27.
    Rahmanian R, Mozaffari SA, Amoli HS, Abedi M. Development of sensitive impedimetric urea biosensor using DC sputtered nano-ZnO on TiO2 thin film as a novel hierarchical nanostructure transducer. Sensors Actuators B Chem. 2017;256:760–74.CrossRefGoogle Scholar
  28. 28.
    Lu L, Huang X, Qu Y. Improvement of carbon paste-based enzyme electrode using a new ionic liquid [Pmim][PF6] as the binder. J Solid State Electrochem. 2012;16:3299–305.CrossRefGoogle Scholar
  29. 29.
    Fan Y, Hu G, Zhang T, Dong X, Zhong Y, Li X. Determination of glucose in food by the ionic liquid and carbon nanotubes modified dual-enzymatic sensors. Food Anal Methods. 2016;9:2491–500.CrossRefGoogle Scholar
  30. 30.
    Zhou L, Zhang X, Ma L. Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection. Biochem Eng J. 2017;128:243–249.Google Scholar
  31. 31.
    Santos CS, Pawlak V, Fujiwara ST. Acetylcholinesterase biosensor based on Paman self-assembled monolayer-modified gold electrode, ECS Meeting. (2014);433. Accessed 1 May 2014
  32. 32.
    Dong J, Wang X, Qiao F, Liu P, Ai S. Highly sensitive electrochemical stripping analysis of methyl parathion at MWCNTs–CeO2–Au nanocomposite modified electrode. Sensors Actuators B Chem. 2013;186:774–80.CrossRefGoogle Scholar
  33. 33.
    Wei M, Feng S. Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode. Microchim Acta. 2017;184:3461–8.CrossRefGoogle Scholar
  34. 34.
    Zheng Y, Liu Z, Jing Y, Li J, Zhan H. An acetylcholinesterase biosensor based on ionic liquid functionalized graphene–gelatin-modified electrode for sensitive detection of pesticides. Sensors Actuators B Chem. 2015;210:389–97.CrossRefGoogle Scholar
  35. 35.
    Dimcheva N, Horozova E, Ivanov Y. Self-assembly of acetylcholinesterase on gold nanoparticles electrodeposited on graphite. Cent Eur J Chem. 2013;11:1740–8.Google Scholar
  36. 36.
    Long Q, Li H, Zhang Y, Yao S. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens Bioelectron. 2015;68:168–74.CrossRefGoogle Scholar
  37. 37.
    Kaur B, Srivastava R, Satpati B. Nanocrystalline titanosilicate–acetylcholinesterase electrochemical biosensor for the ultra-trace detection of toxic organophosphate pesticides. Chemelectrochem. 2015;2:1164–73.CrossRefGoogle Scholar
  38. 38.
    Sundarmurugasan R, Gumpu MB, Ramachandra B. Simultaneous detection of monocrotophos and dichlorvos in orange samples using acetylcholinesterase–zinc oxide modified platinum electrode with linear regression calibration. Sensors Actuators B Chem. 2016;230:306–13.CrossRefGoogle Scholar
  39. 39.
    Zhao H, Ji X, Wang B. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron. 2015;65:23–30.CrossRefGoogle Scholar
  40. 40.
    Ma L, Zhou L, He Y. Hierarchical nanocomposites with an N-doped carbon shell and bimetal core: novel enzyme nanocarriers for electrochemical pesticide detection. Biosens Bioelectron. 2018;121:166–73.CrossRefGoogle Scholar
  41. 41.
    Zhang Q, Xu Q, Guo Y, Sun X, Wang X. Acetylcholinesterase biosensor based on the mesoporous carbon/ferroferric oxide modified electrode for detecting organophosphorus pesticides. RSC Adv. 2016;6:24698–703.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu UniversityZhenjiangChina

Personalised recommendations