Advertisement

Electrochemical DNA biosensors for label-free breast cancer gene marker detection

  • Mehmet SenelEmail author
  • Muamer Dervisevic
  • Firdevs Kokkokoğlu
Research Paper
  • 73 Downloads

Abstract

We present an electrochemical DNA detection strategy based on self-assembled ferrocene-cored poly(amidoamine) dendrimers for the detection of a gene relevant to breast cancer. The chemisorption of three ferrocene-cored poly(amidoamine) generations and hybridization of single-stranded DNA on a Au electrode were studied by cyclic voltammetry and differential pulse voltammetry. The biosensor demonstrated high sensitivity of 0.13 μA/(ng/ml) in the detection of the target DNA with a linear range of 1.3–20 nM and a detection limit of 0.38 nM. The DNA biosensor also has high selectivity for the target DNA, showing a clear signal difference from a noncomplementary sequence and a single-base-mismatch sequence, which was used as a model of BRAC1 gene mutation. The results shown are highly motivating for exploring DNA biosensing technology in the diagnosis of breast cancer caused by mutation of the BRAC1 gene.

Graphical abstract

Keywords

Electrochemical DNA biosensor Ferrocene Poly(amidoamine) Dendrimer Breast cancer 

Notes

Acknowledgements

Some of this work was performed at the former Fatih University as a part of the work presented in FK’s master thesis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Das M, Sumana G, Nagarajan R, Malhotra BD. Zirconia based nucleic acid sensor for Mycobacterium tuberculosis detection. Appl Phys Lett. 2010;96(13):133703.  https://doi.org/10.1063/1.3293447.CrossRefGoogle Scholar
  2. 2.
    Patel MK, Solanki PR, Kumar A, Khare S, Gupta S, Malhotra BD. Electrochemical DNA sensor for Neisseria meningitidis detection. Biosens Bioelectron. 2010;25(12):2586–91.  https://doi.org/10.1016/j.bios.2010.04.025.CrossRefGoogle Scholar
  3. 3.
    Liu S, Su W, Li Z, Ding X. Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures. Biosens Bioelectron. 2015;71:57–61.  https://doi.org/10.1016/j.bios.2015.04.006.CrossRefGoogle Scholar
  4. 4.
    Rasheed PA, Sandhyarani N. Graphene-DNA electrochemical sensor for the sensitive detection of BRCA1 gene. Sens Actuators B. 2014;204:777–82.  https://doi.org/10.1016/j.snb.2014.08.043.CrossRefGoogle Scholar
  5. 5.
    Borghei Y-S, Hosseini M, Ganjali MR, Ju H. A unique FRET approach toward detection of single-base mismatch DNA in BRCA1 gene. Mater Sci Eng C. 2019;97:406–11.  https://doi.org/10.1016/j.msec.2018.12.049.CrossRefGoogle Scholar
  6. 6.
    Wang Y, Huang X, Li H, Guo L. Sensitive impedimetric DNA biosensor based on (Nb,V) codoped TiO2 for breast cancer susceptible gene detection. Mater Sci Eng C. 2017;77:867–73.  https://doi.org/10.1016/j.msec.2017.03.260.CrossRefGoogle Scholar
  7. 7.
    World Health Organization. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer (2018).
  8. 8.
    Sifri R, Gangadharappa S, Acheson LS. Identifying and testing for hereditary susceptibility to common cancers. CA Cancer J Clin. 2004;54(6):309–26.  https://doi.org/10.3322/canjclin.54.6.309.CrossRefGoogle Scholar
  9. 9.
    Chen L, Liu X, Chen C. Impedimetric biosensor modified with hydrophilic material of tannic acid/polyethylene glycol and dopamine-assisted deposition for detection of breast cancer-related BRCA1 gene. J Electroanal Chem. 2017;791:204–10.  https://doi.org/10.1016/j.jelechem.2017.03.001.CrossRefGoogle Scholar
  10. 10.
    Godet I, Gilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017;4(1).  https://doi.org/10.15761/icst.1000228.
  11. 11.
    Coleman MP, Quaresma M, Berrino F, Lutz J-M, De Angelis R, Capocaccia R, et al. Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol. 2008;9(8):730–56.  https://doi.org/10.1016/S1470-2045(08)70179-7.CrossRefGoogle Scholar
  12. 12.
    Jaure O, Alonso EN, Braico DA, Nieto A, Orozco M, Morelli C, et al. BRCA1 polymorphism in breast cancer patients from Argentina. Oncol Lett. 2015;9(2):845–50.  https://doi.org/10.3892/ol.2014.2772.CrossRefGoogle Scholar
  13. 13.
    Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron. 2006;21(10):1887–92.  https://doi.org/10.1016/j.bios.2005.10.027.CrossRefGoogle Scholar
  14. 14.
    Amer WA, Wang L, Amin AM, Ma L, Yu H. Recent progress in the synthesis and applications of some ferrocene derivatives and ferrocene-based polymers. J Inorg Organomet Polym Mater. 2010;20(4):605–15.  https://doi.org/10.1007/s10904-010-9373-6.CrossRefGoogle Scholar
  15. 15.
    Fabre B. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. toward the development of charge storage and communication devices. Acc Chem Res. 2010;43(12):1509–18.  https://doi.org/10.1021/ar100085q.CrossRefGoogle Scholar
  16. 16.
    Dervisevic E, Dervisevic M, Nyangwebah JN, Şenel M. Development of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT bio-nanocomposite film. Sens Actuators B. 2017;246:920–6.  https://doi.org/10.1016/j.snb.2017.02.122.CrossRefGoogle Scholar
  17. 17.
    Şenel M, Abasıyanık MF. Construction of a novel glucose biosensor based on covalent immobilization of glucose oxidase on poly(glycidyl methacrylate-co-vinylferrocene). Electroanalysis. 2010;22(15):1765–71.  https://doi.org/10.1002/elan.200900644.CrossRefGoogle Scholar
  18. 18.
    Miodek A, Mejri-Omrani N, Khoder R, Korri-Youssoufi H. Electrochemical functionalization of polypyrrole through amine oxidation of poly(amidoamine) dendrimers: application to DNA biosensor. Talanta. 2016;154:446–54.  https://doi.org/10.1016/j.talanta.2016.03.076.CrossRefGoogle Scholar
  19. 19.
    Dervisevic M, Senel M, Sagir T, Isik S. Boronic acid vs. folic acid: a comparison of the bio-recognition performances by impedimetric cytosensors based on ferrocene cored dendrimer. Biosens Bioelectron. 2017;91:680–6.  https://doi.org/10.1016/j.bios.2017.01.030.CrossRefGoogle Scholar
  20. 20.
    Miodek A, Mejri N, Gomgnimbou M, Sola C, Korri-Youssoufi H. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem. 2015;87(18):9257–64.  https://doi.org/10.1021/acs.analchem.5b01761.CrossRefGoogle Scholar
  21. 21.
    Hasanzadeh M, Shadjou N, Eskandani M, Soleymani J, Jafari F, de la Guardia M. Dendrimer-encapsulated and cored metal nanoparticles for electrochemical nanobiosensing. Trends Anal Chem. 2014;53:137–49.  https://doi.org/10.1016/j.trac.2013.09.015.CrossRefGoogle Scholar
  22. 22.
    Bahadır EB, Sezgintürk MK. Poly(amidoamine) (PAMAM): an emerging material for electrochemical bio(sensing) applications. Talanta. 2016;148:427–38.  https://doi.org/10.1016/j.talanta.2015.11.022.CrossRefGoogle Scholar
  23. 23.
    D A Tomalia, H Baker, J Dewald, M Hall, G Kallos, S Martin, J Roeck, J Ryder, P Smith, (1985) A New Class of Polymers: Starburst-Dendritic Macromolecules. Polymer Journal 17 (1):117-132Google Scholar
  24. 24.
    Koc FE, Senel M. Solubility enhancement of non-steroidal anti-inflammatory drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers. Int J Pharma. 2013;451(1-2):18–22.  https://doi.org/10.1016/j.ijpharm.2013.04.062.CrossRefGoogle Scholar
  25. 25.
    Li Q, Yu C, Gao R, Xia C, Yuan G, Li Y, et al. A novel DNA biosensor integrated with polypyrrole/streptavidin and Au-PAMAM-CP bionanocomposite probes to detect the rs4839469 locus of the vangl1 gene for dysontogenesis prediction. Biosens Bioelectron. 2016;80:674–81.  https://doi.org/10.1016/j.bios.2016.02.025.CrossRefGoogle Scholar
  26. 26.
    Zhu N, Gao H, Gu Y, Xu Q, He P, Fang Y. PAMAM dendrimer-enhanced DNA biosensors based on electrochemical impedance spectroscopy. Analyst. 2009;134(5):860-6. d  https://doi.org/10.1039/B815488K.
  27. 27.
    Kavosi B, Salimi A, Hallaj R, Moradi F. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens Bioelectron. 2015;74:915–23.  https://doi.org/10.1016/j.bios.2015.07.064.CrossRefGoogle Scholar
  28. 28.
    Borisova B, Sánchez A, Jiménez-Falcao S, Martín M, Salazar P, Parrado C, et al. Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme electrochemical biosensors. Sens Actuators B. 2016;232:84–90.  https://doi.org/10.1016/j.snb.2016.02.106.CrossRefGoogle Scholar
  29. 29.
    Dervisevic M, Dervisevic E, Şenel M. Design of amperometric urea biosensor based on self-assembled monolayer of cystamine/PAMAM-grafted MWCNT/Urease. Sens Actuators B. 2018;254:93–101.  https://doi.org/10.1016/j.snb.2017.06.161.CrossRefGoogle Scholar
  30. 30.
    Dervisevic M, Dervisevic E, Senel M, Cevik E, Yildiz HB, Camurlu P. Construction of ferrocene modified conducting polymer based amperometric urea biosensor. Enzyme Microb Technol. 2017;102:53–9.  https://doi.org/10.1016/j.enzmictec.2017.04.002.CrossRefGoogle Scholar
  31. 31.
    Sağır T, Işık S, Şenel M. Ferrocene incorporated PAMAM dendrons: synthesis, characterization, and anti-cancer activity against AGS cell line. Med Chem Res. 2013;22(10):4867–76.  https://doi.org/10.1007/s00044-013-0491-x.CrossRefGoogle Scholar
  32. 32.
    Li A, Yang F, Ma Y, Yang X. Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens Bioelectron. 2007;22(8):1716–22.  https://doi.org/10.1016/j.bios.2006.07.033.CrossRefGoogle Scholar
  33. 33.
    Bizid S, Blili S, Mlika R, Haj Said A, Korri-Youssoufi H. Direct electrochemical DNA Sensor based on a new redox oligomer modified with ferrocene and carboxylic acid: application to the detection of Mycobacterium tuberculosis mutant strain. Anal Chim Acta. 2017;994:10–8.  https://doi.org/10.1016/j.aca.2017.09.022.CrossRefGoogle Scholar
  34. 34.
    Bizid S, Mlika R, Haj Said A, Chemli M, Korri Youssoufi H. Investigations of poly(p-phenylene) modified with ferrocene and their application in electrochemical DNA sensing. Sens Actuators B. 2016;226:370–80.  https://doi.org/10.1016/j.snb.2015.11.137.CrossRefGoogle Scholar
  35. 35.
    Kuralay F, Erdem A, Abacı S, Özyörük H, Yıldız A. Poly(vinylferrocenium) coated disposable pencil graphite electrode for DNA hybridization. Electrochem Commun. 2009;11(6):1242–6.  https://doi.org/10.1016/j.elecom.2009.04.010.CrossRefGoogle Scholar
  36. 36.
    Steentjes T, Jonkheijm P, Huskens J. Electron transfer processes in ferrocene-modified poly(ethylene glycol) monolayers on electrodes. Langmuir. 2017;33(43):11878–83.  https://doi.org/10.1021/acs.langmuir.7b02160.CrossRefGoogle Scholar
  37. 37.
    Wei-Jie S, Shi-Yun A, Jin-Huan L, Lu-Sheng Z. Electrochemical biosensor based on dendrimer immobilized deoxyribonucleic acid. Chin J Anal Chem. 2008;36(3):335–8.  https://doi.org/10.1016/S1872-2040(08)60025-0.CrossRefGoogle Scholar
  38. 38.
    Fan C, Plaxco KW, Heeger AJ. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci U S A. 2003;100(16):9134–7.  https://doi.org/10.1073/pnas.1633515100.CrossRefGoogle Scholar
  39. 39.
    Ren K, Wu J, Ju H, Yan F. Target-driven triple-binder assembly of MNAzyme for amplified electrochemical immunosensing of protein biomarker. Anal Chem. 2015;87(3):1694–700.  https://doi.org/10.1021/ac504277z.CrossRefGoogle Scholar
  40. 40.
    Torres-Chavolla E, Alocilja EC. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron. 2011;26(11):4614–8.  https://doi.org/10.1016/j.bios.2011.04.055.CrossRefGoogle Scholar
  41. 41.
    Baccar ZM, Caballero D, Eritja R, Errachid A. Development of an impedimetric DNA-biosensor based on layered double hydroxide for the detection of long ssDNA sequences. Electrochim Acta. 2012;74:123–9.  https://doi.org/10.1016/j.electacta.2012.04.031.CrossRefGoogle Scholar
  42. 42.
    Tak M, Gupta V, Tomar M. An electrochemical DNA biosensor based on Ni doped ZnO thin film for meningitis detection. J Electroanal Chem. 2017;792:8–14.  https://doi.org/10.1016/j.jelechem.2017.03.032.CrossRefGoogle Scholar
  43. 43.
    Tak M, Gupta V, Tomar M. A ZnO–CNT nanocomposite based electrochemical DNA biosensor for meningitis detection. RSC Adv. 2016;6(80):76214–22.  https://doi.org/10.1039/C6RA12453D.CrossRefGoogle Scholar
  44. 44.
    Hatamluyi B, Es'haghi Z. Quantitative biodetection of anticancer drug Rituxan with DNA biosensor modified PAMAM dendrimer/reduced graphene oxide nanocomposite. Electroanalysis. 2018;30(8):1659–68.  https://doi.org/10.1002/elan.201800014.CrossRefGoogle Scholar
  45. 45.
    Arotiba O, Owino J, Songa E, Hendricks N, Waryo T, Jahed N, et al. An electrochemical DNA biosensor developed on a nanocomposite platform of gold and poly(propyleneimine) dendrimer. Sensors (Basel). 2008;8(11):6791–809.  https://doi.org/10.3390/s8116791.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mehmet Senel
    • 1
    Email author
  • Muamer Dervisevic
    • 2
  • Firdevs Kokkokoğlu
    • 3
  1. 1.SANKARA Brain & Biotechnology Research CenterNanoyasam Nanobiotechnology CompanyIstanbulTurkey
  2. 2.Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  3. 3.KrakówPoland

Personalised recommendations