Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 12, pp 2675–2685 | Cite as

Selective chiral recognition of alanine enantiomers by chiral calix[4]arene coated quartz crystal microbalance sensors

  • Farabi Temel
  • Serkan Erdemir
  • Begum Tabakci
  • Merve Akpinar
  • Mustafa TabakciEmail author
Research Paper
  • 71 Downloads

Abstract

We describe the synthesis of new chiral calix[4]arene derivatives having (R)-1-phenylethylamine, (S)-1-phenylethylamine, (R)-2-phenylglycinol, and (S)-2-phenylglycinol moieties, and chiral recognition studies for enantiomers of some selected α-amino acid derivatives such as alanine, phenylalanine, serine, and tryptophan using a quartz crystal microbalance (QCM). Initial experiments indicated that the highest selective chiral recognition factor was 1.42 for alanine enantiomers. The sensitivity, limit of detection, and time constant for l-alanine were calculated as 0.028 Hz/μM, 60.9 μM, and 36.2 s, respectively. The results indicated that real-time, sensitive, selective, and effective chiral recognition of alanine enantiomers was achieved with a QCM sensor coated with a chiral calix[4]arene derivative having (R)-2-phenylglycinol moieties.

Keywords

Amino acid Calixarene Alanine Chiral recognition Quartz crystal microbalance sensor 

Notes

Acknowledgements

We thank the Technical Research Council of Turkey (TUBITAK grant number 115Z249) and the Research Foundation of Selçuk University (SUBAP grant number 16401003), Konya, Turkey, and for financial support of this work produced from FT’s Ph.D. thesis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2019_1705_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1.17 mb)

References

  1. 1.
    Yoshio O, Eiji Y. Polysaccharide derivatives for chromatographic separation of enantiomers. Angew Chem Int Ed. 1998;37(8):1020–43.  https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1020::AID-ANIE1020>3.0.CO;2-5.Google Scholar
  2. 2.
    Gawley RE, Aubé J. Practical aspects of asymmetric synthesis. In: Principles of asymmetric synthesis. 2nd ed. Oxford: Elsevier; 2012. p. 63–95.  https://doi.org/10.1016/B978-0-08-044860-2.00002-7.Google Scholar
  3. 3.
    Dewick PM. Medicinal natural products: a biosynthetic approach. 2nd ed. Chichester: Wiley; 2001.Google Scholar
  4. 4.
    Gasparrini F, Pierini M, Villani C, Filippi A, Speranza M. Induced-fit in the gas phase: conformational effects on the enantioselectivity of chiral tetra-amide macrocycles. J Am Chem Soc. 2008;130(2):522–34.  https://doi.org/10.1021/ja073287+.Google Scholar
  5. 5.
    Sambasivan S, Kim D-s, Ahn KH. Chiral discrimination of α-amino acids with a C2-symmetric homoditopic receptor. Chem Commun. 2010;46(4):541–3.  https://doi.org/10.1039/B919957H.Google Scholar
  6. 6.
    Bi Q, Dong S, Sun Y, Lu X, Zhao L. An electrochemical sensor based on cellulose nanocrystal for the enantioselective discrimination of chiral amino acids. Anal Biochem. 2016;508:50–7.  https://doi.org/10.1016/j.ab.2016.05.022.Google Scholar
  7. 7.
    Ilisz I, Péter A, Lindner W. State-of-the-art enantioseparations of natural and unnatural amino acids by high-performance liquid chromatography. Trends Anal Chem. 2016;81:11–22.  https://doi.org/10.1016/j.trac.2016.01.016.Google Scholar
  8. 8.
    Sánchez-Hernández L, Bernal JL, Nozal MJ, Toribio L. Chiral analysis of aromatic amino acids in food supplements using subcritical fluid chromatography and Chirobiotic T2 column. J Supercrit Fluids. 2016;107:519–25.  https://doi.org/10.1016/j.supflu.2015.06.027.Google Scholar
  9. 9.
    Yu X, Yao Z-P. Chiral differentiation of amino acids through binuclear copper bound tetramers by ion mobility mass spectrometry. Anal Chim Acta. 2017;981:62–70.  https://doi.org/10.1016/j.aca.2017.05.026.Google Scholar
  10. 10.
    Tabakcı M, Tabakcı B, Yılmaz M. Design and synthesis of new chiral calix[4]arenes as liquid phase extraction agents for α-amino acid methylesters and chiral α-amines. J Incl Phenom Macrocycl Chem. 2005;53(1–2):51–6.  https://doi.org/10.1007/s10847-005-0697-8.Google Scholar
  11. 11.
    Erdemir S. Synthesis of novel chiral Schiff base and amino alcohol derivatives of calix[4]arene and chiral recognition properties. J Mol Struct. 2012;1007:235–41.  https://doi.org/10.1016/j.molstruc.2011.10.053.Google Scholar
  12. 12.
    Zhang X, Chen S, Xu P, Yu Q, Dai Z. Synthesis of new chiral fluorescent sensors and their applications in enantioselective discrimination. Tetrahedron Lett. 2017;58(29):2850–5.  https://doi.org/10.1016/j.tetlet.2017.06.025.Google Scholar
  13. 13.
    Gao G, Lv C, Li Q, Ai L, Zhang J. Enantiomeric discrimination of α-hydroxy acids and N-Ts-α-amino acids by 1H NMR spectroscopy. Tetrahedron Lett. 2015;56(48):6742–6.  https://doi.org/10.1016/j.tetlet.2015.10.060.Google Scholar
  14. 14.
    Yin X, Ding J, Zhang S, Kong J. Enantioselective sensing of chiral amino acids by potentiometric sensors based on optical active polyaniline films. Biosens Bioelectron. 2006;21(11):2184–7.  https://doi.org/10.1016/j.bios.2005.10.010.Google Scholar
  15. 15.
    Fu YQ, Luo JK, Nguyen NT, Walton AJ, Flewitt AJ, Zu XT, et al. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog Mater Sci. 2017;89:31–91.  https://doi.org/10.1016/j.pmatsci.2017.04.006.Google Scholar
  16. 16.
    Sayin S, Ozbek C, Okur S, Yilmaz M. Preparation of the ferrocene-substituted 1,3-distal p-tert-butylcalix[4]arene based QCM sensors array and utilization of its gas-sensing affinities. J Organomet Chem. 2014;771:9–13.  https://doi.org/10.1016/j.jorganchem.2014.06.004.Google Scholar
  17. 17.
    Baldini L, Sansone F, Faimani G, Massera C, Casnati A, Ungaro R. Self-assembled Chiral dimeric capsules from difunctionalized N,C-linked peptidocalix[4]arenes: scope and limitations. Eur J Org Chem. 2008;5:869–86.  https://doi.org/10.1002/ejoc.200700943.Google Scholar
  18. 18.
    Pirondini L, Dalcanale E. Molecular recognition at the gas–solid interface: a powerful tool for chemical sensing. Chem Soc Rev. 2007;36(5):695–706.  https://doi.org/10.1039/B516256B.Google Scholar
  19. 19.
    Koshets IA, Kazantseva ZI, Shirshov YM, Cherenok SA, Kalchenko VI. Calixarene films as sensitive coatings for QCM-based gas sensors. Sensors Actuators B Chem. 2005;106(1):177–81.  https://doi.org/10.1016/j.snb.2004.05.054.Google Scholar
  20. 20.
    Miah M, Pavey KD, Gun'ko VM, Sheehan R, Cragg PJ. Observation of transient alkali metal inclusion in oxacalix[3]arenes. Supramol Chem. 2004;16(3):185–92.  https://doi.org/10.1080/10610270310001644473.Google Scholar
  21. 21.
    Wang C, He X-W, Chen L-X. A piezoelectric quartz crystal sensor array self assembled calixarene bilayers for detection of volatile organic amine in gas. Talanta. 2002;57(6):1181–8.  https://doi.org/10.1016/S0039-9140(02)00193-5.Google Scholar
  22. 22.
    Sharma K, Cragg P. Calixarene based chemical sensors. Chem Senses. 2011;1(9):1–18.Google Scholar
  23. 23.
    Hao R-Z, Song H-B, Zuo G-M, Yang R-F, Wei H-P, Wang D-B, et al. DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection. Biosens Bioelectron. 2011;26(8):3398–404.  https://doi.org/10.1016/j.bios.2011.01.010.Google Scholar
  24. 24.
    Jearanaikoon P, Prakrankamanant P, Leelayuwat C, Wanram S, Limpaiboon T, Promptmas C. The evaluation of loop-mediated isothermal amplification-quartz crystal microbalance (LAMP-QCM) biosensor as a real-time measurement of HPV16 DNA. J Virol Methods. 2016;229:8–11.  https://doi.org/10.1016/j.jviromet.2015.12.005.Google Scholar
  25. 25.
    Karaseva N, Ermolaeva T, Mizaikoff B. Piezoelectric sensors using molecularly imprinted nanospheres for the detection of antibiotics. Sensors Actuators B Chem. 2016;225:199–208.  https://doi.org/10.1016/j.snb.2015.11.045.Google Scholar
  26. 26.
    Pei Z, Saint-Guirons J, Käck C, Ingemarsson B, Aastrup T. Real-time analysis of the carbohydrates on cell surfaces using a QCM biosensor: a lectin-based approach. Biosens Bioelectron. 2012;35(1):200–5.  https://doi.org/10.1016/j.bios.2012.02.047.Google Scholar
  27. 27.
    Sauerbrey G. Use of quartz vibrator for weighing thin layers and as a microbalance. Z Phys. 1959;155:206–22.  https://doi.org/10.1007/BF01337937.
  28. 28.
    Fakhrullin RF, Vinter VG, Zamaleeva AI, Matveeva MV, Kourbanov RA, Temesgen BK, et al. Quartz crystal microbalance immunosensor for the detection of antibodies to double-stranded DNA. Anal Bioanal Chem. 2007;388(2):367–75.  https://doi.org/10.1007/s00216-007-1230-2.Google Scholar
  29. 29.
    Lee S-W, Hinsberg WD, Kanazawa KK. Determination of the viscoelastic properties of polymer films using a compensated phase-locked oscillator circuit. Anal Chem. 2002;74(1):125–31.  https://doi.org/10.1021/ac0108358.Google Scholar
  30. 30.
    Arnau A, Sogorb T, Jiménez Y. Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation. Rev Sci Instrum. 2002;73(7):2724–37.  https://doi.org/10.1063/1.1484254.Google Scholar
  31. 31.
    Nwankwo E, Durning CJ. Impedance analysis of thickness-shear mode quartz crystal resonators in contact with linear viscoelastic media. Rev Sci Instrum. 1998;69(6):2375–84.  https://doi.org/10.1063/1.1148963.Google Scholar
  32. 32.
    Su X-L, Li Y. A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance. Biosens Bioelectron. 2005;21(6):840–8.  https://doi.org/10.1016/j.bios.2005.01.021.Google Scholar
  33. 33.
    Singh AK, Singh M. Molecularly imprinted Au-nanoparticle composite-functionalized EQCM sensor for l-serine. J Electroanal Chem. 2016;780:169–75.  https://doi.org/10.1016/j.jelechem.2016.09.021.Google Scholar
  34. 34.
    Mirmohseni A, Shojaei M, Farbodi M. Application of a quartz crystal nanobalance to the molecularly imprinted recognition of phenylalanine in solution. Biotechnol Bioprocess Eng. 2008;13(5):592–7.  https://doi.org/10.1007/s12257-008-0028-1.Google Scholar
  35. 35.
    Nakanishi T, Yamakawa N, Asahi T, Osaka T, Ohtani B, Uosaki K. Enantioselective adsorption of phenylalanine onto self-assembled monolayers of 1,1‘-binaphthalene-2,2‘-dithiol on gold. J Am Chem Soc. 2002;124(5):740–1.  https://doi.org/10.1021/ja012084x.Google Scholar
  36. 36.
    Bodenhofer K, Hierlemann A, Seemann J, Gauglitz G, Koppenhoefer B, Gopel W. Chiral discrimination using piezoelectric and optical gas sensors. Nature. 1997;387(6633):577–80.Google Scholar
  37. 37.
    Yılmaz A, Tabakcı B, Tabakcı M. New diamino derivatives of p-tert-butylcalix[4]arene for oxyanion recognition: synthesis and complexation studies. Supramol Chem. 2009;21(6):435–41.  https://doi.org/10.1080/10610270802165969.Google Scholar
  38. 38.
    Gutsche CD, Dhawan B, No KH, Muthukrishnan R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J Am Chem Soc. 1981;103(13):3782–92.  https://doi.org/10.1021/ja00403a028.Google Scholar
  39. 39.
    Ovsyannikov A, Solovieva S, Antipin I, Ferlay S. Coordination polymers based on calixarene derivatives: structures and properties. Coord Chem Rev. 2017;352(Suppl C):151–86.  https://doi.org/10.1016/j.ccr.2017.09.004.Google Scholar
  40. 40.
    Kostyukevych KV, Khristosenko RV, Pavluchenko AS, Vakhula AA, Kazantseva ZI, Koshets IA, et al. A nanostructural model of ethanol adsorption in thin calixarene films. Sensors Actuators B Chem. 2016;223:470–80.  https://doi.org/10.1016/j.snb.2015.09.123.Google Scholar
  41. 41.
    Nikoleli G-P, Nikolelis DP, Evtugyn G, Hianik T. Advances in lipid film based biosensors. Trends Anal Chem. 2016;79:210–21.  https://doi.org/10.1016/j.trac.2016.01.021.Google Scholar
  42. 42.
    Temel F, Özçelik E, Türe AG, Tabakcı M. Sensing abilities of functionalized calix[4]arene coated QCM sensors towards volatile organic compounds in aqueous media. Appl Surf Sci. 2017;412:238–51.  https://doi.org/10.1016/j.apsusc.2017.03.258.Google Scholar
  43. 43.
    Su WC, Zhang WG, Zhang S, Fan J, Yin X, Luo ML, et al. A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor. Biosens Bioelectron. 2009;25(2):488–92.  https://doi.org/10.1016/j.bios.2009.06.040.Google Scholar
  44. 44.
    Temel F, Tabakcı M. Calix[4]arene coated QCM sensors for detection of VOC emissions: methylene chloride sensing studies. Talanta. 2016;153:221–7.  https://doi.org/10.1016/j.talanta.2016.03.026.Google Scholar
  45. 45.
    Long GL, Winefordner JD. Limit of detection a closer look at the IUPAC definition. Anal Chem. 1983;55(7):712A–24A.  https://doi.org/10.1021/ac00258a724.Google Scholar
  46. 46.
    Koshets IA, Kazantseva ZI, Belyaev AE, Kalchenko VI. Sensitivity of resorcinarene films towards aliphatic alcohols. Sensors Actuators B Chem. 2009;140(1):104–8.  https://doi.org/10.1016/j.snb.2009.04.014.Google Scholar
  47. 47.
    Fu Y, Finklea HO. Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers. Anal Chem. 2003;75(20):5387–93.  https://doi.org/10.1021/ac034523b.Google Scholar
  48. 48.
    Grate JW, Snow A, Ballantine DS, Wohltjen H, Abraham MH, McGill RA, et al. Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients. Anal Chem. 1988;60(9):869–75.  https://doi.org/10.1021/ac00160a010.Google Scholar
  49. 49.
    Meng R, Kang J. Determination of the stereoisomeric impurities of sitafloxacin by capillary electrophoresis with dual chiral additives. J Chromatogr A. 2017;1506:120–7.  https://doi.org/10.1016/j.chroma.2017.05.010.Google Scholar
  50. 50.
    Li Z-T, Ji G-Z, Zhao C-X, Yuan S-D, Ding H, Huang C, et al. Self-assembling calix[4]arene [2]catenanes. Preorganization, conformation, selectivity, and efficiency. J Org Chem. 1999;64(10):3572–84.  https://doi.org/10.1021/jo9824100.Google Scholar
  51. 51.
    Jeong H, Park K, Yoo J-C, Hong J. Structural heterogeneity in polymeric nitric oxide donor nanoblended coatings for controlled release behaviors. RSC Adv. 2018;8(68):38792–800.  https://doi.org/10.1039/C8RA07707J.Google Scholar
  52. 52.
    Häkkinen H. The gold–sulfur interface at the nanoscale. Nat Chem. 2012;4:443.  https://doi.org/10.1038/nchem.1352.Google Scholar
  53. 53.
    Zhang X, Yu Q, Lu W, Chen S, Dai Z. Synthesis of new chiral fluorescent sensors and their applications in enantioselective discrimination. Tetrahedron Lett. 2017;58(41):3924–7.  https://doi.org/10.1016/j.tetlet.2017.08.077.Google Scholar
  54. 54.
    Memon FN, Memon S. Sorption and desorption of basic dyes from industrial wastewater using calix[4]arene based impregnated material. Sep Sci Technol. 2014;50(8):1135–46.  https://doi.org/10.1080/01496395.2014.965831.Google Scholar
  55. 55.
    Mutihac L, Lee JH, Kim JS, Vicens J. Recognition of amino acids by functionalized calixarenes. Chem Soc Rev. 2011;40(5):2777–96.  https://doi.org/10.1039/C0CS00005A.Google Scholar
  56. 56.
    Yuan Y, Lee TR. Contact angle and wetting properties. In: Bracco G, Holst B, editors. Surface science techniques. Berlin: Springer; 2013. p. 3–34.  https://doi.org/10.1007/978-3-642-34243-1_1.Google Scholar
  57. 57.
    Mannan S, Fakhru'l-Razi A, Alam MZ. Optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum, using response surface methodology. J Environ Sci. 2007;19(1):23–8.  https://doi.org/10.1016/S1001-0742(07)60004-7.Google Scholar
  58. 58.
    Noordin MY, Venkatesh VC, Sharif S, Elting S, Abdullah A. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J Mater Process Technol. 2004;145(1):46–58.  https://doi.org/10.1016/S0924-0136(03)00861-6.Google Scholar
  59. 59.
    Körbahti BK, Tanyolaç A. Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: optimization through response surface methodology. J Hazard Mater. 2008;151(2–3):422–31.  https://doi.org/10.1016/j.jhazmat.2007.06.010.Google Scholar
  60. 60.
    Amini M, Younesi H, Bahramifar N, Lorestani AAZ, Ghorbani F, Daneshi A, et al. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J Hazard Mater. 2008;154(1):694–702.  https://doi.org/10.1016/j.jhazmat.2007.10.114.Google Scholar
  61. 61.
    Silva JP, Sousa S, Gonçalves I, Porter JJ, Ferreira-Dias S. Modelling adsorption of acid orange 7 dye in aqueous solutions to spent brewery grains. Sep Purif Technol. 2004;40(2):163–70.  https://doi.org/10.1016/j.seppur.2004.02.006.Google Scholar
  62. 62.
    Lee K, Hamid S. Simple response surface methodology: investigation on advance photocatalytic oxidation of 4-chlorophenoxyacetic acid using UV-active ZnO photocatalyst. Materials. 2015;8(1):339–54.  https://doi.org/10.3390/ma8010339.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Farabi Temel
    • 1
    • 2
  • Serkan Erdemir
    • 3
  • Begum Tabakci
    • 3
  • Merve Akpinar
    • 1
    • 2
  • Mustafa Tabakci
    • 1
    • 2
    Email author
  1. 1.Department of Chemical EngineeringKonya Technical UniversityKonyaTurkey
  2. 2.Department of Chemical EngineeringSelçuk UniversityKonyaTurkey
  3. 3.Department of ChemistrySelçuk UniversityKonyaTurkey

Personalised recommendations