Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 11, pp 2249–2259 | Cite as

Highly parallel remote SPR detection of DNA hybridization by micropillar optical arrays

  • Karim Vindas
  • Loic Leroy
  • Patrick Garrigue
  • Silvia Voci
  • Thierry Livache
  • Stéphane Arbault
  • Neso Sojic
  • Arnaud Buhot
  • Elodie EngelEmail author
Paper in Forefront

Abstract

Remote detection by surface plasmon resonance (SPR) is demonstrated through microstructured optical arrays of conical nanotips or micropillars. Both geometries were fabricated by controlled wet chemical etching of bundles comprising several thousands of individual optical fibers. Their surface was coated by a thin gold layer in order to confer SPR properties. The sensitivity and resolution of both shapes were evaluated as a function of global optical index changes in remote detection mode performed by imaging through the etched optical fiber bundle itself. With optimized geometry of micropillar arrays, resolution was increased up to 10−4 refractive index units. The gold-coated micropillar arrays were functionalized with DNA and were able to monitor remotely the kinetics of DNA hybridization with complementary strands. We demonstrate for the first time highly parallel remote SPR detection of DNA via microstructured optical arrays. The obtained SPR sensitivity combined with the remote intrinsic properties of the optical fiber bundles should find promising applications in biosensing, remote SPR imaging, a lab-on-fiber platform dedicated to biomolecular analysis, and in vivo endoscopic diagnosis.

Graphical abstract

We present a single fabrication step to structure simultaneously all the individual cores of an optical fiber bundle composed of thousands of fibers. The resulting sensor is optimized for reflection mode (compatible with in vivo applications) and is used to perform for the first time highly parallel remote SPR detection of DNA via several thousands of individual optical fiber SPR sensors paving the way for multiplexed biological detection.

Keywords

Micropillar arrays Surface plasmon resonance Optical fiber bundles Remote detection DNA hybridization 

Notes

Funding

This research project is currently funded by the Agence Nationale pour la Recherche (MOLY, ANR-15-CE19-0005-01). This work has been partially supported by Labex ARCANE and CBH-EUR-GS (ANR-17-EURE-0003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_1689_MOESM1_ESM.pdf (3.5 mb)
ESM 1 (PDF 3516 kb)

References

  1. 1.
    Hoheisel M. Review of medical imaging with emphasis on X-ray detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006;563(1):215–24.  https://doi.org/10.1016/j.nima.2006.01.123.Google Scholar
  2. 2.
    Aaron F, Dónal BD, Cardinal HN. Three-dimensional ultrasound imaging. Phys Med Biol. 2001;46(5):R67.Google Scholar
  3. 3.
    Fuzari HKB, de Andrade AD, Vilar CF, Sayao LB, Diniz PRB, Souza FH, et al. Diagnostic accuracy of magnetic resonance imaging in post-traumatic brachial plexus injuries: a systematic review. Clin Neurol Neurosurg. 2018;164:5–10.  https://doi.org/10.1016/j.clineuro.2017.11.003.Google Scholar
  4. 4.
    Subramanian V, Ragunath K. Advanced endoscopic imaging: a review of commercially available technologies. Clin Gastroenterol Hepatol. 2014;12(3):368.  https://doi.org/10.1016/j.cgh.2013.06.015.Google Scholar
  5. 5.
    Viellerobe B, Osdoit A, Cave C, Lacombe F, Loiseau S, Abrat B. Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy. In: Tearney GJ, Wang TD, editors. Endoscopic Microscopy. Proceedings of SPIE. Bellingham: Spie-Int Soc Optical Engineering; 2006.Google Scholar
  6. 6.
    Pantano P, Walt DR. Ordered nanowell arrays. Chem Mater. 1996;8(12):2832–5.  https://doi.org/10.1021/cm9603314.Google Scholar
  7. 7.
    LaFratta CN, Walt DR. Very high density sensing arrays. Chem Rev. 2008;108(2):614–37.  https://doi.org/10.1021/cr0681142.Google Scholar
  8. 8.
    Walt DR. Fiber optic imaging sensors. Acc Chem Res. 1998;31(5):267–78.  https://doi.org/10.1021/ar970069k.Google Scholar
  9. 9.
    Deiss F, Sojic N, White DJ, Stoddart PR. Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging. Anal Bioanal Chem. 2010;396(1):53–71.  https://doi.org/10.1007/s00216-009-3211-0.Google Scholar
  10. 10.
    Guieu V, Garrigue P, Lagugne-Labarthet F, Servant L, Sojic N, Talaga D. Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle. Opt Express. 2009;17(26):24030–5.  https://doi.org/10.1364/oe.17.024030.Google Scholar
  11. 11.
    Zamuner M, Talaga D, Deiss F, Guieu V, Kuhn A, Ugo P, et al. Fabrication of a macroporous microwell array for surface-enhanced Raman scattering. Adv Funct Mater. 2009;19(19):3129–35.  https://doi.org/10.1002/adfm.200900752.Google Scholar
  12. 12.
    Epstein JR, Walt DR. Fluorescence-based fibre optic arrays: a universal platform for sensing. Chem Soc Rev. 2003;32(4):203–14.  https://doi.org/10.1039/000617d. Google Scholar
  13. 13.
    Rissin DM, Walt DR. Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics. Nano Lett. 2006;6(3):520–3.  https://doi.org/10.1021/nl060227d.Google Scholar
  14. 14.
    Li ZH, Hayman RB, Walt DR. Detection of single-molecule DNA hybridization using enzymatic amplification in an array of femtoliter-sized reaction vessels. J Am Chem Soc. 2008;130(38):12622.  https://doi.org/10.1021/ja8053018.Google Scholar
  15. 15.
    Hartley JS, Juodkazis S, Stoddart PR. Optical fibers for miniaturized surface-enhanced Raman-scattering probes. Appl Opt. 2013;52(34):8388–93.  https://doi.org/10.1364/ao.52.008388.Google Scholar
  16. 16.
    Aouani H, Deiss F, Wenger J, Ferrand P, Sojic N, Rigneault H. Optical-fiber-microsphere for remote fluorescence correlation spectroscopy. Opt Express. 2009;17(21):19085–92.  https://doi.org/10.1364/oe.17.019085.Google Scholar
  17. 17.
    Gorris HH, Blicharz TM, Walt DR. Optical-fiber bundles. FEBS J. 2007;274(21):5462–70.  https://doi.org/10.1111/j.1742-4658.2007.06078.x.Google Scholar
  18. 18.
    Pollet J, Delport F, Janssen KPF, Jans K, Maes G, Pfeiffer H, et al. Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions. Biosens Bioelectron. 2009;25(4):864–9.  https://doi.org/10.1016/j.bios.2009.08.045.Google Scholar
  19. 19.
    Spoto G, Minunni M. Surface plasmon resonance imaging: what next? J Phys Chem Lett. 2012;3(18):2682–91.  https://doi.org/10.1021/jz301053n.Google Scholar
  20. 20.
    Kretschmann E, Raether H. Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch. 1968;23(a):2135–2136.Google Scholar
  21. 21.
    Su YW, Wang W. Surface plasmon resonance sensing: from purified biomolecules to intact cells. Anal Bioanal Chem. 2018:1–9.  https://doi.org/10.1007/s00216-018-1008-8.
  22. 22.
    Shabani A, Tabrizian M. Design of a universal biointerface for sensitive, selective, and multiplex detection of biomarkers using surface plasmon resonance imaging. Analyst. 2013;138(20):6052–62.  https://doi.org/10.1039/C3AN01374J.Google Scholar
  23. 23.
    Jorgenson RC, Yee SS. A fiberoptic chemical sensor-based on surface-plasmon resonance. Sensors Actuators B Chem. 1993;12(3):213–20.  https://doi.org/10.1016/0925-4005(93)80021-3.Google Scholar
  24. 24.
    Kurihara K, Ohkawa H, Iwasaki Y, Niwa O, Tobita T, Suzuki K. Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber. Anal Chim Acta. 2004;523(2):165–70.  https://doi.org/10.1016/j.aca.2004.07.045.Google Scholar
  25. 25.
    Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem. 2015;407(14):3883–97.  https://doi.org/10.1007/s00216-014-8411-6.Google Scholar
  26. 26.
    Qian S, Lin M, Ji W, Yuan H, Zhang Y, Jing Z, et al. Boronic acid functionalized au nanoparticles for selective microRNA signal amplification in fiber-optic surface plasmon resonance sensing system. ACS Sens. 2018.  https://doi.org/10.1021/acssensors.7b00871.
  27. 27.
    Gupta BD, Sharma AK. Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sensors Actuators B Chem. 2005;107(1):40–6.  https://doi.org/10.1016/j.snb.2004.08.030.Google Scholar
  28. 28.
    Kanso M, Cuenot S, Louarn G. Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments. Plasmonics. 2008;3(2):49–57.  https://doi.org/10.1007/s11468-008-9055-1.Google Scholar
  29. 29.
    Antohe I, Spasic D, Delport F, Li JQ, Lammertyn J. Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing. Nanotechnology. 2017;28(21).  https://doi.org/10.1088/1361-6528/aa6b53.
  30. 30.
    Aray A, Chiavaioli F, Arjmand M, Trono C, Tombelli S, Giannetti A, et al. SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum. J Biophotonics. 2016;9(10):1077–84.  https://doi.org/10.1002/jbio.201500315.Google Scholar
  31. 31.
    Lu J, Spasic D, Delport F, Van Stappen T, Detrez I, Daems D, et al. Immunoassay for detection of infliximab in whole blood using a fiber-optic surface plasmon resonance biosensor. Anal Chem. 2017;89(6):3664–71.  https://doi.org/10.1021/acs.analchem.6b05092.Google Scholar
  32. 32.
    Sharma AK, Jha R, Gupta BD. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J. 2007;7(7–8):1118–29.  https://doi.org/10.1109/jsen.2007.897946. Google Scholar
  33. 33.
    Hlubina P, Kadulova M, Ciprian D, Sobota J. Reflection-based fibre-optic refractive index sensor using surface plasmon resonance. J Europ Opt Soc Rap Public. 2014;9:14033.  https://doi.org/10.2971/jeos.2014.14033.
  34. 34.
    Chigusa Y, Fujiwara K, Hattori Y, Matsuda Y. Properties of silica glass image fiber and its applications. Optoelectronics {Devices and Technologies}. 1986;1(2):203–15.Google Scholar
  35. 35.
    Guieu V, Lagugne-Labarthet F, Servant L, Talaga D, Sojic N. Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging. Small. 2008;4(1):96–9.  https://doi.org/10.1002/smll.200700526.Google Scholar
  36. 36.
    Pantano P, Walt DR. Toward a near-field optical array. Rev Sci Instrum. 1997;68(3):1357–9.  https://doi.org/10.1063/1.1147941.Google Scholar
  37. 37.
    Guieu V, Talaga D, Servant L, Sojic N, Lagugne-Labarthet F. Multitip-localized enhanced Raman scattering from a nanostructured optical fiber array. J Phys Chem C. 2009;113(3):874–81.  https://doi.org/10.1021/jp808839f.Google Scholar
  38. 38.
    Chen J, Shi S, Su R, Qi W, Huang R, Wang M, et al. Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles. Sensors. 2015;15(6).  https://doi.org/10.3390/s150612205.
  39. 39.
    Klantsataya E, Jia P, Ebendorff-Heidepriem H, Monro MT, François A. Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends. Sensors. 2017;17(1).  https://doi.org/10.3390/s17010012.
  40. 40.
    Malara P, Crescitelli A, Di Meo V, Giorgini A, Avino S, Esposito E, et al. Resonant enhancement of plasmonic nanostructured fiber optic sensors. Sensors Actuators B Chem. 2018;273:1587–92.  https://doi.org/10.1016/j.snb.2018.07.030.Google Scholar
  41. 41.
    DeBono RF, Loucks GD, DellaManna D, Krull UJ. Self-assembly of short and long-chain n-alkyl thiols onto gold surfaces: a real-time study using surface plasmon resonance techniques. Can J Chem. 1996;74(5):677–88.  https://doi.org/10.1139/v96-073.Google Scholar
  42. 42.
    Mannelli I, Lecerf L, Guerrouache M, Goossens M, Millot MC, Canva M. DNA immobilisation procedures for surface plasmon resonance imaging (SPRI) based microarray systems. Biosens Bioelectron. 2007;22(6):803–9.  https://doi.org/10.1016/j.bios.2006.02.022.Google Scholar
  43. 43.
    Fiche JB, Buhot A, Calemczuk R, Livache T. Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves. Biophys J. 2007;92(3):935–46.  https://doi.org/10.1529/biophysj.106.097790.Google Scholar
  44. 44.
    Li YJ, Bi LJ, Zhang XE, Zhou YF, Zhang JB, Chen YY, et al. Reversible immobilization of proteins with streptavidin affinity tags on a surface plasmon resonance biosensor chip. Anal Bioanal Chem. 2006;386(5):1321–6.  https://doi.org/10.1007/s00216-006-0794-6.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Karim Vindas
    • 1
  • Loic Leroy
    • 1
  • Patrick Garrigue
    • 2
  • Silvia Voci
    • 2
  • Thierry Livache
    • 1
    • 3
  • Stéphane Arbault
    • 2
  • Neso Sojic
    • 2
  • Arnaud Buhot
    • 1
  • Elodie Engel
    • 1
    Email author
  1. 1.CEA, CNRS, INAC-SyMMESUniversité Grenoble AlpesGrenobleFrance
  2. 2.INP-Bordeaux, ISM, CNRS UMR5255Université de BordeauxPessacFrance
  3. 3.Aryballe Technologies, CEA/MINATECGrenoble Cedex 09France

Personalised recommendations