Analytical and Bioanalytical Chemistry

, Volume 411, Issue 12, pp 2521–2530 | Cite as

Facile detection of melamine by a FAM–aptamer–G-quadruplex construct

  • Ruifang Su
  • Hongru Zheng
  • Shuyue Dong
  • Rui Sun
  • Shangna Qiao
  • Hongjing Sun
  • Xinyue Ma
  • Tiehua ZhangEmail author
  • Chunyan SunEmail author
Research Paper


The development of a novel method for melamine detection that uses a FAM–aptamer–G-quadruplex construct due to the efficient quenching ability of an aptamer-linked G-quadruplex is reported herein. The construct, which is labeled with the fluorescent dye 6-carboxyfluorescein (FAM), consists of two parts: a melamine-binding aptamer and a G-rich sequence that can form a G-quadruplex structure. Because of the specific recognition of melamine by the T-rich aptamer, this aptamer folds into a hairpin structure in the presence of melamine, which draws the G-quadruplex closer to the FAM fluorophore, leading to the quenching of the fluorescence of FAM. Thus, a highly sensitive and selective fluorescence strategy for assaying melamine was established. Under optimal conditions, the fluorescence quenching is proportional to the concentration of melamine within the range 10–90 nM, and the method has a detection limit of 6.32 nM. Further application of the method to plastic cup samples suggested that it permitted recoveries of between 97.15% ± 1.02 and 101.92% ± 2.07. The detected amounts of melamine spiked into the plastic cup samples and the corresponding amounts measured by HPLC were in good accordance, indicating that this fluorescent method is reliable and practical. Owing to its high sensitivity, excellent selectivity, and convenient procedure, this strategy represents a promising alternative method of melamine screening.

Graphical abstract


Melamine G-quadruplex Aptamer Fluorescence 



This work was financially supported by the National Natural Science Foundation of China (no. 31571919), and the Modern Agriculture Project of the Jilin Province-University Coconstruction Scheme (no. SF2017-6-4).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/ or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

216_2019_1688_MOESM1_ESM.pdf (197 kb)
ESM 1 (PDF 197 kb)


  1. 1.
    Wang JB, Moussa N, Hisahiro K, Koji M, Fujio K. Placental transfer of melamine and its effects on rat dams and fetuses. Food Chem Toxicol. 2010;48:1791–5.CrossRefGoogle Scholar
  2. 2.
    Ritota M, Manzi P. Melamine detection in milk and dairy products: traditional analytical methods and recent developments. Food Anal Methods. 2018;11:128–47.CrossRefGoogle Scholar
  3. 3.
    Zhang SJ, Zhao QY, Na H, Sun YP, Suo YR, You JM. Sensitive determination of melamine leached from tableware by reversed phase high-performance liquid chromatography using 10-methyl-acridone-2-sulfonyl chloride as a pre-column fluorescent labeling reagent. Food Control. 2014;39:25–9.CrossRefGoogle Scholar
  4. 4.
    Mattarozzi M, Milioli M, Cavalieri C, Bianchi F, Careri M. Rapid desorption electrospray ionization-high resolution mass spectrometry method for the analysis of melamine migration from melamine tableware. Talanta. 2012;101:453–9.CrossRefGoogle Scholar
  5. 5.
    Lund KH, Petersen JH. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic. Food Addit Contam. 2006;23:948–55.CrossRefGoogle Scholar
  6. 6.
    Hau AKC, Kwan TH, Li PKT. Melamine toxicity and the kidney. J Am Soc Nephrol. 2009;20:245–50.CrossRefGoogle Scholar
  7. 7.
    Kobayashi T, Okada A, Fujii Y, Niimi K, Hamamoto S, Yasui T, et al. The mechanism of renal stone formation and renal failure induced by administration of melamine and cyanuric acid. Urol Res. 2010;38:117–25.CrossRefGoogle Scholar
  8. 8.
    Dorne JL, Doerge DR, Vandenbroeck M, Fink-Gremmels J, Mennes W, Knutsen HK, et al. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed. Toxicol Appl Pharmacol. 2013;270:218–29.CrossRefGoogle Scholar
  9. 9.
    European Commission. Off J Eur Union L. 2011;328:22–9.Google Scholar
  10. 10.
    Venkatasami G, Sowa JR Jr. A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula. Anal Chim Acta. 2010;665:227–30.CrossRefGoogle Scholar
  11. 11.
    Wu YT, Huang CM, Lin CC, Ho WA, Lin LC, Chiu TF, et al. Determination of melamine in rat plasma, liver, kidney, spleen, bladder and brain by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2009;1216:7595–601.CrossRefGoogle Scholar
  12. 12.
    Pan XD, Wu PG, Yang DJ, Wang LY, Shen XH, Zhu CY. Simultaneous determination of melamine and cyanuric acid in dairy products by mixed-mode solid phase extraction and GC-MS. Food Control. 2013;30:545–8.CrossRefGoogle Scholar
  13. 13.
    Zhang YL, Chen LJ, Zhang C, Liu ST, Zhu HK, Wang YM. Polydopamine-assisted partial hydrolyzed poly(2-methyl-2-oxazolinze) as coating for determination of melamine in milk by capillary electrophoresis. Talanta. 2016;150:375–87.Google Scholar
  14. 14.
    Cao BY, Yang H, Song J, Chang HF, Li SQ, Deng AP. Sensitivity and specificity enhanced enzyme-linked immunosorbent assay by rational hapten modification and heterogeneous antibody/coating antigen combinations for the detection of melamine in milk, milk powder and feed samples. Talanta. 2013;116:173–80.CrossRefGoogle Scholar
  15. 15.
    Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22.Google Scholar
  16. 16.
    Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.CrossRefGoogle Scholar
  17. 17.
    Ilgu M, Nilsen-Hamiltona M. Aptamers in analytics. Analyst. 2016;141:1551–68.CrossRefGoogle Scholar
  18. 18.
    Pfeiffer F, Mayer G. Selection and biosensor application of aptamers for small molecules. Front Chem. 2016;4:25.CrossRefGoogle Scholar
  19. 19.
    Feng CJ, Dai S, Wang L. Optical aptasensors for quantitative detection of small biomolecules: A review. Biosens Bioelectron. 2014;59:64–74.CrossRefGoogle Scholar
  20. 20.
    Zhan SS, Wu YG, Wang LM, Zhan XJ, Zhou P. A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens Bioelectron. 2016;86:353–68.CrossRefGoogle Scholar
  21. 21.
    Deng B, Lin YW, Wang C, Li F, Wang ZX, Zhang HQ, et al. Aptamer binding assays for proteins: The thrombin example—a review. Anal Chim Acta. 2014;837:1–15.Google Scholar
  22. 22.
    Hong KL, Sooter LJ. Single-stranded DNA aptamers against pathogens and toxins: Identification and biosensing applications. BioMed Res Int. 2015;419318.Google Scholar
  23. 23.
    Zeng YY, Pratumyot Y, Piao XJ, Bong D. Discrete assembly of synthetic peptide-DNA triplex structures from polyvalent melamine-thymine bifacial recognition. J Am Chem Soc. 2012;134:832–5.CrossRefGoogle Scholar
  24. 24.
    Yang HL, Wang JJ, Wu QH, Wang Y, Li L, Ding BM. Simple and label-free fluorescent detection of melamine based on melamine–thymine recognition. Sensors. 2018;18:2968–74.CrossRefGoogle Scholar
  25. 25.
    Yun W, Li H, Chen SQ, Tu DW, Xie WY, Huang Y. Aptamer-based rapid visual biosensing of melamine in whole milk. Eur Food Res Technol. 2014;238:989–95.CrossRefGoogle Scholar
  26. 26.
    Jiang ZL, Zhou LP, Liang AH. Resonance scattering detection of trace melamine using aptamer-modified nanosilver probe as catalyst without separation of its aggregations. Chem Commun. 2011;47:3162–4.CrossRefGoogle Scholar
  27. 27.
    Dong N, Hu YJ, Yang K, Liu JZ. Development of aptamer-modified SERS nanosensor and oligonucleotide chip to quantitatively detect melamine in milk with high sensitivity. Sensors Actuators B Chem. 2016;228:85–93.CrossRefGoogle Scholar
  28. 28.
    Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–15.Google Scholar
  29. 29.
    Huppert JL. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev. 2008;37:1375–84.Google Scholar
  30. 30.
    Lane AN, Chaires JB, Gray RD, Trent JO. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res. 2008;36:5482–515.CrossRefGoogle Scholar
  31. 31.
    Ruttkay-Nedecky B, Kudr J, Nejdl L, Maskova D, Kizek R, Adam V. G-quadruplexes as sensing probes. Molecules. 2013;18:14760–79.CrossRefGoogle Scholar
  32. 32.
    Miao P, Tang YG, Wang BD, Han K, Chen XF, Sun HX. An aptasensor for detection of potassium ions based on RecJf exonuclease mediated signal amplification. Analyst. 2014;139(22):5695–9.CrossRefGoogle Scholar
  33. 33.
    Zhang J, Wang LL, Hou MF, Luo LP, Liao YJ, Xia YK, et al. Label-free fluorescent and electrochemical biosensors based on defective G-quadruplexes. Biosens Bioelectron. 2018;118:1–8.CrossRefGoogle Scholar
  34. 34.
    Torimura M, Kurata S, Yamada K, Yokomaku T, Kamagata Y, Kanagawa T, et al. Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal Sci. 2001;17:155–60.CrossRefGoogle Scholar
  35. 35.
    Zhang YW, Tian JQ, Zhai JF, Luo YL, Wang L, Li HL, et al. Fluorescence-enhanced potassium ions detection based on inherent quenching ability of deoxyguanosines and K+-induced conformational transition of G-rich ssDNA from duplex to G-quadruplex structures. J Fluoresc. 2011;21:1841–6.CrossRefGoogle Scholar
  36. 36.
    Wang L, Tian JQ, Li HL, Zhang YW, Sun XP. A novel single-labeled fluorescent oligonucleotide probe for silver(I) ion detection based on the inherent quenching ability of deoxyguanosines. Analyst. 2011;136:891–3.CrossRefGoogle Scholar
  37. 37.
    Zhu YF, Wang YS, Zhou B, Yu JH, Peng LL, Huang YQ, et al. A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II). Anal Bioanal Chem. 2017;409:4951–8.CrossRefGoogle Scholar
  38. 38.
    Fan HY, Shek YL, Amiri A, Dubins DN, Heerklotz H, Macgregor RB, et al. Volumetric characterization of sodium-induced G-quadruplex formation. J Am Chem Soc. 2011;133:4518–26.CrossRefGoogle Scholar
  39. 39.
    Yang XH, Zhu Y, Liu P, He LL, Li QZ, Wang Q, et al. G-quadruplex fluorescence quenching ability: a simple and efficient strategy to design a single-labeled DNA probe. Anal Methods. 2012;4:895–7.CrossRefGoogle Scholar
  40. 40.
    Bian LJ, Ji X, Hu W. A novel single-labeled fluorescent oligonucleotide probe for silver(I) ion detection in water, drugs, and food. J Agric Food Chem. 2014;62:4870–7.CrossRefGoogle Scholar
  41. 41.
    Wang WH, Jin Y, Zhao YN, Yue XF, Zhang CX. Single-labeled hairpin probe for highly specific and sensitive detection of lead(II) based on the fluorescence quenching of deoxyguanosine and G-quartet. Biosens Bioelectron. 2013;41:137–42.CrossRefGoogle Scholar
  42. 42.
    Pang S, Liu SY, Su XG. A novel fluorescence assay for the detection of hemoglobin based on the G-quadruplex/hemin complex. Talanta. 2014;118:118–22.CrossRefGoogle Scholar
  43. 43.
    Li T, Wang EK, Dong SJ. Potassium-lead-switched G-quadruplexes: a new class of DNA logic gates. J Am Chem Soc. 2009;131:15082–3.CrossRefGoogle Scholar
  44. 44.
    Xu LJ, Sun N, Zhou L, Chen X, Wang JN, Wang QL, et al. A label-free fluorescence assay for potassium ions using riboflavin as a G-quadruplex ligand. Analyst. 2015;140:3352–5.CrossRefGoogle Scholar
  45. 45.
    Zhang DJ, Han J, Li YC, Fan LZ, Li XH. Aptamer-based K+ sensor: process of aptamer transforming into G-quadruplex. J Phys Chem B. 2016;120:6606–11.CrossRefGoogle Scholar
  46. 46.
    Zhu X, Chen LF, Lin ZY, Qiu B, Chen GN. A highly sensitive and selective “signal-on” electrochemiluminescent biosensor for mercury. Chem Commun. 2010;46:3149–51.CrossRefGoogle Scholar
  47. 47.
    Guo LQ, Yin N, Chen GN. Photoinduced electron transfer mediated by π-stacked thymine-Hg2+-thymine base pairs. J Phys Chem C. 2011;115:4837–42.CrossRefGoogle Scholar
  48. 48.
    Chang YM, Chen CK, Hou MH. Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int J Mol Sci. 2012;13:3394–413.CrossRefGoogle Scholar
  49. 49.
    Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009;37:1713–25.CrossRefGoogle Scholar
  50. 50.
    Gao S, Cao YW, Yan YT, Guo XH. Sequence effect on the topology of 3 + 1 interlocked bimolecular DNA G-quadruplexes. Biochemistry. 2016;55:2694–703.CrossRefGoogle Scholar
  51. 51.
    Esposito V, Pirone L, Mayol L, Pedone E, Virgilio A, Galeone A. Exploring the binding of d(GGGT)4 to the HIV-1 integrase: an approach to investigate G-quadruplex aptamer/target protein interactions. Biochimie. 2016;27:19–22.Google Scholar
  52. 52.
    Cheng S, Zheng B, Wang MZ, Ge XW, Zhao Q, Liu W, et al. The unfolding of G-quadruplexes and its adverse effect on DNA-gold nanoparticles-based sensing system. Biosens Bioelectron. 2014;53:479–85.CrossRefGoogle Scholar
  53. 53.
    Engelhard DM, Nowack J, Clever GH. Copper-induced topology switching and thrombin inhibition with telomeric DNA G-quadruplexes. Angew Chem Int Ed. 2017;56:11640–4.CrossRefGoogle Scholar
  54. 54.
    Friedman SJ, Terentis AC. Analysis of G-quadruplex conformations using Raman and polarized Raman spectroscopy. J Raman Spectrosc. 2016;47:259–68.CrossRefGoogle Scholar
  55. 55.
    Zhang BZ, Wei CY. Highly sensitive and selective detection of Pb2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor. Talanta. 2018;182:125–30.CrossRefGoogle Scholar
  56. 56.
    Guo LQ, Nie DD, Qiu CY, Zheng QS, Wu HY, Ye PR, et al. A G-quadruplex based label-free fluorescent biosensor for lead ion. Biosens Bioelectron. 2012;35:123–7.CrossRefGoogle Scholar
  57. 57.
    Khedr A. Optimized extraction method for LC–MS determination of bisphenol A, melamine and di(2-ethylhexyl) phthalate in selected soft drinks, syringes, and milk powder. J Chromatogr B. 2013;930:98–103.CrossRefGoogle Scholar
  58. 58.
    Liu YT, Deng J, Xiao XL, Ding L, Yuan YL, Li H, et al. Electrochemical sensor based on a poly(para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochim Acta. 2011;56:4595–602.Google Scholar
  59. 59.
    Hu XR, Chang KK, Wang S, Sun XQ, Hu JD, Jiang M. Aptamer-functionalized AuNPs for the high sensitivity colorimetric detection of melamine in milk samples. PLoS One. 2018;13:e0201626.CrossRefGoogle Scholar
  60. 60.
    Hao XJ, Zhou XH, Zhang Y, Liu LH, Long F, Song L, et al. Melamine detection in dairy products by using a reusable evanescent wave fiber-optic biosensor. Sensors Actuators B Chem. 2014;204:682–7.CrossRefGoogle Scholar
  61. 61.
    Guo HL, Zhou XH, Zhang Y, Song BD, Zhang JX, Shi HC. Highly sensitive and simultaneous detection of melamine and aflatoxin M1 in milk products by multiplexed planar waveguide fluorescence immunosensor (MPWFI). Food Chem. 2016;197:359–66.CrossRefGoogle Scholar
  62. 62.
    Gu CM, Xiang Y, Guo HL, Shi HC. Label-free fluorescence detection of melamine with a truncated aptamer. Analyst. 2016;141:4511–7.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ruifang Su
    • 1
  • Hongru Zheng
    • 2
  • Shuyue Dong
    • 1
  • Rui Sun
    • 1
  • Shangna Qiao
    • 1
  • Hongjing Sun
    • 1
  • Xinyue Ma
    • 1
  • Tiehua Zhang
    • 1
    Email author
  • Chunyan Sun
    • 1
    Email author
  1. 1.College of Food Science and EngineeringJilin UniversityChangchunChina
  2. 2.Jilin Province Product Quality Supervision and Inspection InstituteChangchunChina

Personalised recommendations