Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 11, pp 2351–2362 | Cite as

Untargeted adductomics of Cys34 modifications to human serum albumin in newborn dried blood spots

  • Yukiko Yano
  • Hasmik Grigoryan
  • Courtney Schiffman
  • William Edmands
  • Lauren Petrick
  • Katie Hall
  • Todd Whitehead
  • Catherine Metayer
  • Sandrine Dudoit
  • Stephen RappaportEmail author
Research Paper

Abstract

Metabolism of chemicals from the diet, exposures to xenobiotics, the microbiome, and lifestyle factors (e.g., smoking, alcohol intake) produce electrophiles that react with nucleophilic sites in circulating proteins, notably Cys34 of human serum albumin (HSA). To discover potential risk factors resulting from in utero exposures, we are investigating HSA-Cys34 adducts in archived newborn dried blood spots (DBS) that reflect systemic exposures during the last month of gestation. The workflow includes extraction of proteins from DBS, measurement of hemoglobin (Hb) to normalize for blood volume, addition of methanol to enrich HSA by precipitation of Hb and other interfering proteins, digestion with trypsin, and detection of HSA-Cys34 adducts via nanoflow liquid chromatography-high-resolution mass spectrometry. As proof-of-principle, we applied the method to 49 archived DBS collected from newborns whose mothers either actively smoked during pregnancy or were nonsmokers. Twenty-six HSA-Cys34 adducts were detected, including Cys34 oxidation products, mixed disulfides with low molecular weight thiols (e.g., cysteine, homocysteine, glutathione, cysteinylglycine), and other modifications. Data were normalized with a novel method (“scone”) to remove unwanted technical variation arising from HSA digestion, blood volume, DBS age, mass spectrometry analysis, and batch effects. Using an ensemble of linear and nonlinear models, the Cys34 adduct of cyanide was found to consistently discriminate between newborns of smoking and nonsmoking mothers with a mean fold change (smoking/nonsmoking) of 1.31. These results indicate that DBS adductomics is suitable for investigating in utero exposures to reactive chemicals and metabolites that may influence disease risks later in life.

Keywords

Adductomics Human serum albumin Dried blood spots In utero exposures 

Notes

Acknowledgments

The biospecimens used in this study were obtained from the California Biobank Program (SIS request number 26) in accordance with Section 6555(b), 17 CCR.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding Sources

This work was supported by US National Institutes of Health through grants P01ES018172, P50ES018172, R01ES009137, and P42ES0470518 from the National Institute for Environmental Health Sciences and grant R33CA191159 from the National Cancer Institute, by the US Environmental Protection Agency through grants RD83451101 and RD83615901, and by a grant for a pilot project from Children with Cancer, a registered Charity in the UK.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The CCLS and Center for Integrative Research on Childhood Leukemia and the Environment were approved by the University of California Committee for the Protection of Human Subjects, the California Health and Human Services Agency Committee for the Protection of Human Subjects, and the institutional review boards of all participating hospitals, as appropriate.

Informed consent

Written informed consent was obtained from all adult volunteer subjects and parents of all participating subjects in the CCLS.

Disclaimer

The NIEHS, USEPA, and California Department of Public Health are not responsible for the results or conclusions drawn by the authors of this publication.

Supplementary material

216_2019_1675_MOESM1_ESM.pdf (2.3 mb)
ESM 1 (PDF 2306 kb)

References

  1. 1.
    Rubino FM, Pitton M, Di Fabio D, Colombi A. Toward an “omic ” physiopathology of reactive chemicals: thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds. Mass Spectrom Rev. 2009;28:725–84.  https://doi.org/10.1002/mas.20207.CrossRefGoogle Scholar
  2. 2.
    Törnqvist M, Fred C, Haglund J, Helleberg H, Paulsson B, Rydberg P. Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J Chromatogr B. 2002;778:279–308.  https://doi.org/10.1016/S1570-0232(02)00172-1.CrossRefGoogle Scholar
  3. 3.
    Aldini G, Vistoli G, Regazzoni L, Gamberoni L, Facino RM, Yamaguchi S, et al. Albumin is the main nucleophilic target of human plasma: a protective role against pro-atherogenic electrophilic reactive carbonyl species? Chem Res Toxicol. 2008;21:824–35.  https://doi.org/10.1021/tx700349r.CrossRefGoogle Scholar
  4. 4.
    Rappaport SM, Li H, Grigoryan H, Funk WE, Williams ER. Adductomics: characterizing exposures to reactive electrophiles. Toxicol Lett. 2012;213:83–90.  https://doi.org/10.1016/j.toxlet.2011.04.002.CrossRefGoogle Scholar
  5. 5.
    Grigoryan H, Edmands W, Lu SS, Yano Y, Regazzoni L, Iavarone AT, et al. Adductomics pipeline for untargeted analysis of modifications to Cys34 of human serum albumin. Anal Chem. 2016;88:10504–12.  https://doi.org/10.1021/acs.analchem.6b02553.CrossRefGoogle Scholar
  6. 6.
    Lu SS, Grigoryan H, Edmands WMB, Hu W, Iavarone AT, Hubbard A, et al. Profiling the serum albumin Cys34 adductome of solid fuel users in Xuanwei and Fuyuan, China. Environ Sci Technol. 2017;51:46–57.  https://doi.org/10.1021/acs.est.6b03955.CrossRefGoogle Scholar
  7. 7.
    Liu S, Grigoryan H, Edmands WMB, Dagnino S, Sinharay R, Cullinan P, et al. Cys34 adductomes differ between patients with chronic lung or heart disease and healthy controls in Central London. Environ Sci Technol. 2018;52:2307–13.  https://doi.org/10.1021/acs.est.7b05554.CrossRefGoogle Scholar
  8. 8.
    Grigoryan H, Edmands WMB, Lan Q, Carlsson H, Vermeulen R, Zhang L, et al. Adductomic signatures of benzene exposure provide insights into cancer induction. Carcinogenesis. 2018;39:661–8.  https://doi.org/10.1093/carcin/bgy042.CrossRefGoogle Scholar
  9. 9.
    Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJC, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39:171–87.  https://doi.org/10.1053/j.semperi.2015.03.002.CrossRefGoogle Scholar
  10. 10.
    Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB, et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci. 1997;94:13950–4.  https://doi.org/10.1073/pnas.94.25.13950.CrossRefGoogle Scholar
  11. 11.
    Greaves M. In utero origins of childhood leukaemia. Early Hum Dev. 2005;81:123–9.  https://doi.org/10.1016/j.earlhumdev.2004.10.004.CrossRefGoogle Scholar
  12. 12.
    Wiemels JL, Walsh KM, de Smith AJ, Metayer C, Gonseth S, Hansen HM, et al. GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat Commun. 2018;9:286.  https://doi.org/10.1038/s41467-017-02596-9.CrossRefGoogle Scholar
  13. 13.
    Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.  https://doi.org/10.1056/NEJMra0708473.CrossRefGoogle Scholar
  14. 14.
    Chambers AG, Percy AJ, Hardie DB, Borchers CH. Comparison of proteins in whole blood and dried blood spot samples by LC/MS/MS. J Am Soc Mass Spectrom. 2013;24:1338–45.  https://doi.org/10.1007/s13361-013-0678-x.CrossRefGoogle Scholar
  15. 15.
    Martin NJ, Cooper HJ. Challenges and opportunities in mass spectrometric analysis of proteins from dried blood spots. Expert Rev Proteomics. 2014;11:685–95.  https://doi.org/10.1586/14789450.2014.965158.CrossRefGoogle Scholar
  16. 16.
    Chambers AG, Percy AJ, Yang J, Borchers CH. Multiple reaction monitoring enables precise quantification of 97 proteins in dried blood spots. Mol Cell Proteomics. 2015;14:3094–104.  https://doi.org/10.1074/mcp.O115.049957.CrossRefGoogle Scholar
  17. 17.
    Hustoft HK, Reubsaet L, Greibrokk T, Lundanes E, Malerod H. Critical assessment of accelerating trypsination methods. J Pharm Biomed Anal. 2011;56:1069–78.  https://doi.org/10.1016/j.jpba.2011.08.013.CrossRefGoogle Scholar
  18. 18.
    Grigoryan H, Li H, Iavarone AT, Williams ER, Rappaport SM. Cys34 adducts of reactive oxygen species in human serum albumin. Chem Res Toxicol. 2012;25:1633–42.  https://doi.org/10.1021/tx300096a.CrossRefGoogle Scholar
  19. 19.
    Metayer C, Zhang L, Wiemels JL, Bartley K, Schiffman J, Ma X, et al. Tobacco smoke exposure and the risk of childhood acute lymphoblastic and myeloid leukemias by cytogenetic subtype. Cancer Epidemiol Biomark Prev. 2013;22:1600–11.  https://doi.org/10.1158/1055-9965.EPI-13-0350.CrossRefGoogle Scholar
  20. 20.
    California Department of Public Health (CDPH) Newborn Screening Specimens Use and Storage. https://www.cdph.ca.gov/Programs/CFH/DGDS/Pages/nbs/NBSDBS-Storage.aspx. Accessed 11 May 2018.
  21. 21.
    Waterman MR (1978) [48] Spectral characterization of human hemoglobin and its derivatives. In: Methods Enzymol pp 456–463.Google Scholar
  22. 22.
    Meng F, Alayash AI. Determination of extinction coefficients of human hemoglobin in various redox states. Anal Biochem. 2017;521:11–9.  https://doi.org/10.1016/j.ab.2017.01.002.CrossRefGoogle Scholar
  23. 23.
    BioTek Instruments (2012) Multi-Volume Based Protein Quantification.Google Scholar
  24. 24.
    R Development Core Team (2016) R: a Language and environment for statistical computing. In: R Found. Stat. Comput. Vienna, Austria. https://www.r-project.org/. Accessed 8 Mar 2017.
  25. 25.
    Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, et al. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17:520–5.  https://doi.org/10.1093/bioinformatics/17.6.520.CrossRefGoogle Scholar
  26. 26.
    Cole M, Risso D (2018) Scone: single cell overview of normalized expression data. R Packag. version 1.2.0.Google Scholar
  27. 27.
    Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32:896–902.  https://doi.org/10.1038/nbt.2931.CrossRefGoogle Scholar
  28. 28.
    Cole MB, Risso D, Wagner A, DeTomaso D, Ngai J, Purdom E, Dudoit S, Yosef N (2017) Performance assessment and selection of normalization procedures for single-cell RNA-Seq. bioRxiv 1–30.  https://doi.org/10.1101/235382.
  29. 29.
    Petrick L, Edmands W, Schiffman C, Grigoryan H, Perttula K, Yano Y, et al. An untargeted metabolomics method for archived newborn dried blood spots in epidemiologic studies. Metabolomics. 2017;13:27.  https://doi.org/10.1007/s11306-016-1153-z.CrossRefGoogle Scholar
  30. 30.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.Google Scholar
  31. 31.
    Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B. 1996;58:267–88.Google Scholar
  32. 32.
    Bach FR (2008) Bolasso: model consistent lasso estimation through the bootstrap. In: Proc. 25th Int. Conf. Mach. Learn. ACM press, New York, New York, USA, pp 33–40.Google Scholar
  33. 33.
    Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.Google Scholar
  34. 34.
    Calle ML, Urrea V. Letter to the editor: stability of random forest importance measures. Brief Bioinform. 2011;12:86–9.  https://doi.org/10.1093/bib/bbq011.CrossRefGoogle Scholar
  35. 35.
    LeDell E, Petersen M, Van Der Laan M (2016) Cross-validated area under the ROC curve confidence intervals. R Packag. version 1.1.0.Google Scholar
  36. 36.
    Bremmer RH, de Bruin DM, de Joode M, Buma WJ, van Leeuwen TG, Aalders MCG. Biphasic oxidation of oxy-hemoglobin in bloodstains. PLoS One. 2011;6:e21845.  https://doi.org/10.1371/journal.pone.0021845.CrossRefGoogle Scholar
  37. 37.
    Bremmer RH, Nadort A, van Leeuwen TG, van Gemert MJC, Aalders MCG. Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy. Forensic Sci Int. 2011;206:166–71.  https://doi.org/10.1016/j.forsciint.2010.07.034.CrossRefGoogle Scholar
  38. 38.
    Funk WE, Waidyanatha S, Chaing SH, Rappaport SM. Hemoglobin adducts of benzene oxide in neonatal and adult dried blood spots. Cancer Epidemiol Biomark Prev. 2008;17:1896–901.  https://doi.org/10.1158/1055-9965.EPI-08-0356.CrossRefGoogle Scholar
  39. 39.
    DeWilde A, Sadilkova K, Sadilek M, Vasta V, Hahn SH. Tryptic peptide analysis of ceruloplasmin in dried blood spots using liquid chromatography-tandem mass spectrometry: application to newborn screening. Clin Chem. 2008;54:1961–8.  https://doi.org/10.1373/clinchem.2008.111989.CrossRefGoogle Scholar
  40. 40.
    Andropoulos DB (2011) Appendix B: pediatric normal laboratory values. In: Greg. Pediatr. Anesth. Wiley-Blackwell, Oxford, UK, pp 1300–1314.Google Scholar
  41. 41.
    (1982) 3. Fetal hemoglobin: structure and function. Scand J Clin Lab Invest 42:32–37.  https://doi.org/10.1080/00365518209168384.
  42. 42.
    Hustoft HK, Malerod H, Wilson SR, Reubsaet L, Lundanes E, Greibrokk T (2012) A critical review of trypsin digestion for LC-MS based proteomics. Integr Proteomics  https://doi.org/10.5772/2473.
  43. 43.
    Klammer AA, MacCoss MJ. Effects of modified digestion schemes on the identification of proteins from complex mixtures. J Proteome Res. 2006;5:695–700.  https://doi.org/10.1021/pr050315j.CrossRefGoogle Scholar
  44. 44.
    van den Broek I, Niessen WMA, van Dongen WD. Bioanalytical LC–MS/MS of protein-based biopharmaceuticals. J Chromatogr B. 2013;929:161–79.  https://doi.org/10.1016/j.jchromb.2013.04.030.CrossRefGoogle Scholar
  45. 45.
    De Livera AM, Dias DA, De Souza D, Rupasinghe T, Pyke J, Tull D, et al. Normalizing and integrating metabolomics data. Anal Chem. 2012;84:10768–76.  https://doi.org/10.1021/ac302748b.CrossRefGoogle Scholar
  46. 46.
    Go Y-M, Chandler JD, Jones DP. The cysteine proteome. Free Radic Biol Med. 2015;84:227–45.  https://doi.org/10.1016/j.freeradbiomed.2015.03.022.CrossRefGoogle Scholar
  47. 47.
    Wagner M, Tonoli D, Varesio E, Hopfgartner G. The use of mass spectrometry to analyze dried blood spots. Mass Spectrom Rev. 2016;35:361–438.  https://doi.org/10.1002/mas.21441.CrossRefGoogle Scholar
  48. 48.
    Björkesten J, Enroth S, Shen Q, Wik L, Hougaard DM, Cohen AS, et al. Stability of proteins in dried blood spot biobanks. Mol Cell Proteomics. 2017;16:1286–96.  https://doi.org/10.1074/mcp.RA117.000015.CrossRefGoogle Scholar
  49. 49.
    Fennell TR, MacNeela JP, Morris RW, Watson M, Thompson CL, Bell DA. Hemoglobin adducts from acrylonitrile and ethylene oxide in cigarette smokers: effects of glutathione s-transferase T1-null and M1-null genotypes. Cancer Epidemiol Biomark Prev. 2000;9:705–12.Google Scholar
  50. 50.
    Carlsson H, von Stedingk H, Nilsson U, Törnqvist M. LC–MS/MS screening strategy for unknown adducts to N-terminal valine in hemoglobin applied to smokers and nonsmokers. Chem Res Toxicol. 2014;27:2062–70.  https://doi.org/10.1021/tx5002749.CrossRefGoogle Scholar
  51. 51.
    Talhout R, Schulz T, Florek E, Van Benthem J, Wester P, Opperhuizen A. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 2011;8:613–28.  https://doi.org/10.3390/ijerph8020613.CrossRefGoogle Scholar
  52. 52.
    Aldini G, Dalle-Donne I, Facino RM, Milzani A, Carini M. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med Res Rev. 2007;27:817–68.  https://doi.org/10.1002/med.20073.CrossRefGoogle Scholar
  53. 53.
    Colombo G, Aldini G, Orioli M, Giustarini D, Gornati R, Rossi R, et al. Water-soluble α,β-unsaturated aldehydes of cigarette smoke induce carbonylation of human serum albumin. Antioxid Redox Signal. 2010;12:349–64.  https://doi.org/10.1089/ars.2009.2806.CrossRefGoogle Scholar
  54. 54.
    Weiner D, Levy Y, Khankin EV, Reznick AZ. Inhibition of salivary amylase activity by cigarette smoke aldehydes. J Physiol Pharmacol. 2008;59(Suppl 6):727–37.Google Scholar
  55. 55.
    Vinnakota CV, Peetha NS, Perrizo MG, Ferris DG, Oda RP, Rockwood GA, et al. Comparison of cyanide exposure markers in the biofluids of smokers and non-smokers. Biomarkers. 2012;17:625–33.  https://doi.org/10.3109/1354750X.2012.709880.CrossRefGoogle Scholar
  56. 56.
    Fasco MJ, Stack RF, Lu S, Hauer CR, Schneider E, Dailey M, et al. Unique cyanide adduct in human serum albumin: potential as a surrogate exposure marker. Chem Res Toxicol. 2011;24:505–14.  https://doi.org/10.1021/tx100344e.CrossRefGoogle Scholar
  57. 57.
    Fasco MJ, Hauer CR, Stack RF, O’Hehir C, Barr JR, Eadon GA. Cyanide adducts with human plasma proteins: albumin as a potential exposure surrogate. Chem Res Toxicol. 2007;20:677–84.  https://doi.org/10.1021/tx6003425.CrossRefGoogle Scholar
  58. 58.
    DiFranza JR, Aligne CA, Weitzman M. Prenatal and postnatal environmental tobacco smoke exposure and children’s health. Pediatrics. 2004;113:1007–15.Google Scholar
  59. 59.
    Knopik VS, Maccani MA, Francazio S, McGeary JE. The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol. 2012;24:1377–90.  https://doi.org/10.1017/S0954579412000776.CrossRefGoogle Scholar
  60. 60.
    de Smith AJ, Kaur M, Gonseth S, Endicott A, Selvin S, Zhang L, et al. Correlates of prenatal and early-life tobacco smoke exposure and frequency of common gene deletions in childhood acute lymphoblastic leukemia. Cancer Res. 2017;77:1674–83.  https://doi.org/10.1158/0008-5472.CAN-16-2571.CrossRefGoogle Scholar
  61. 61.
    Metayer C, Petridou E, Aranguré JMM, Roman E, Schüz J, Magnani C, et al. Parental tobacco smoking and acute myeloid leukemia. Am J Epidemiol. 2016;184:261–73.  https://doi.org/10.1093/aje/kww018.CrossRefGoogle Scholar
  62. 62.
    Gonseth S, de Smith AJ, Roy R, Zhou M, Lee S-T, Shao X, et al. Genetic contribution to variation in DNA methylation at maternal smoking-sensitive loci in exposed neonates. Epigenetics. 2016;11:664–73.  https://doi.org/10.1080/15592294.2016.1209614.CrossRefGoogle Scholar
  63. 63.
    Momen NC, Olsen J, Gissler M, Li J. Exposure to maternal smoking during pregnancy and risk of childhood cancer: a study using the Danish national registers. Cancer Causes Control. 2016;27:341–9.  https://doi.org/10.1007/s10552-015-0707-0.CrossRefGoogle Scholar
  64. 64.
    Whitehead TP, Metayer C, Wiemels JL, Singer AW, Miller MD. Childhood leukemia and primary prevention. Curr Probl Pediatr Adolesc Health Care. 2016;46:317–52.  https://doi.org/10.1016/j.cppeds.2016.08.004.CrossRefGoogle Scholar
  65. 65.
    Florescu A, Ferrence R, Einarson T, Selby P, Soldin O, Koren G. Methods for quantification of exposure to cigarette smoking and environmental tobacco smoke: focus on developmental toxicology. Ther Drug Monit. 2009;31:14–30.  https://doi.org/10.1097/FTD.0b013e3181957a3b.CrossRefGoogle Scholar
  66. 66.
    Holbrook BD. The effects of nicotine on human fetal development. Birth Defects Res Part C. 2016;108:181–92.  https://doi.org/10.1002/bdrc.21128.CrossRefGoogle Scholar
  67. 67.
    Spector LG, Murphy SE, Wickham KM, Lindgren B, Joseph AM. Prenatal tobacco exposure and cotinine in newborn dried blood spots. Pediatrics. 2014;133:e1632–8.  https://doi.org/10.1542/peds.2013-3118.CrossRefGoogle Scholar
  68. 68.
    Yang J, Pearl M, Jacob P, DeLorenze GN, Benowitz NL, Yu L, et al. Levels of cotinine in dried blood specimens from newborns as a biomarker of maternal smoking close to the time of delivery. Am J Epidemiol. 2013;178:1648–54.  https://doi.org/10.1093/aje/kwt182.CrossRefGoogle Scholar
  69. 69.
    Spector LG, Hecht SS, Ognjanovic S, Carmella SG, Ross JA. Detection of cotinine in newborn dried blood spots. Cancer Epidemiol Biomark Prev. 2007;16:1902–5.  https://doi.org/10.1158/1055-9965.EPI-07-0230.CrossRefGoogle Scholar
  70. 70.
    Rappaport SM, Waidyanatha S, Qu Q, Shore R, Jin X, Cohen B, et al. Albumin adducts of benzene oxide and 1,4-benzoquinone as measures of human benzene metabolism. Cancer Res. 2002;62:1330–7.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yukiko Yano
    • 1
  • Hasmik Grigoryan
    • 1
  • Courtney Schiffman
    • 2
  • William Edmands
    • 1
  • Lauren Petrick
    • 3
  • Katie Hall
    • 1
  • Todd Whitehead
    • 4
    • 5
  • Catherine Metayer
    • 4
    • 5
  • Sandrine Dudoit
    • 2
  • Stephen Rappaport
    • 1
    • 5
    Email author
  1. 1.Division of Environmental Health Sciences, School of Public HealthUniversity of CaliforniaBerkeleyUSA
  2. 2.Division of Biostatistics, School of Public HealthUniversity of CaliforniaBerkeleyUSA
  3. 3.The Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.Division of Epidemiology, School of Public HealthUniversity of CaliforniaBerkeleyUSA
  5. 5.Center for Integrative Research on Childhood Leukemia and the EnvironmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations