Advertisement

Liposome protein corona characterization as a new approach in nanomedicine

  • Anna Laura Capriotti
  • Chiara Cavaliere
  • Susy PiovesanaEmail author
Trends
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

This trends article describes the analytical approaches for the in-depth characterization of the protein corona on liposome nanoparticles. In particular, examples since 2014 are summarized according to the analytical approach. Traditional protein corona characterizations from in vitro static experiments are provided along with the newly introduced experimental setups for characterization of the protein corona by in vitro dynamic and in vivo studies. Additionally, a special attention is also devoted to the need for introduction of new experimental workflows for characterization of a much wider array of biomolecules. In the most recent years, an extension of the protein corona concept to the biomolecular corona was introduced, and the analytical targets are no longer restricted to proteins, but to other important biomolecules as well, as they can potentially affect the biodistribution and interaction of nanoparticles with the biological systems. The few recent examples in this field are discussed for the characterization of metabolites and lipids in the biomolecular corona with examples, also extending the discussion from liposome to other types of nanoparticles. A final discussion is provided on the potential key role of the most recent omics approaches in the study of the nano-bio interface, with an overview on top-down proteomics, which allows a better elucidation of proteoforms, and on lipidomics and metabolomics, which allow a comprehensive untargeted characterization of lipids and metabolites, respectively.

Graphical abstract

Keywords

Liposomes Biomolecular corona Protein corona Proteomics Metabolomics Lipidomics 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yang J, Bahreman A, Daudey G, Bussmann J, Olsthoorn RCL, Kros A. Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Cent Sci. 2016;2:621–30.  https://doi.org/10.1021/acscentsci.6b00172.CrossRefGoogle Scholar
  2. 2.
    Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed. 2007;46:5754–6.  https://doi.org/10.1002/anie.200700465.CrossRefGoogle Scholar
  3. 3.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci. 2008;105:14265–70.  https://doi.org/10.1073/pnas.0805135105.CrossRefGoogle Scholar
  4. 4.
    Monopoli MP, Bombelli FB, Dawson KA. Nanoparticle coronas take shape. Nat Nanotechnol. 2011;6:11–2.  https://doi.org/10.1038/nnano.2011.267.CrossRefGoogle Scholar
  5. 5.
    Capriotti AL, Caracciolo G, Cavaliere C, Foglia P, Pozzi D, Samperi R, et al. Do plasma proteins distinguish between liposomes of varying charge density? J Proteome. 2012;75:1924–32.  https://doi.org/10.1016/j.jprot.2012.01.003.CrossRefGoogle Scholar
  6. 6.
    Caracciolo G, Pozzi D, Capriotti AL, Marianecci C, Carafa M, Marchini C, et al. Factors determining the superior performance of lipid/DNA/protammine nanoparticles over lipoplexes. J Med Chem. 2011;54:4160–71.  https://doi.org/10.1021/jm200237p.CrossRefGoogle Scholar
  7. 7.
    Caracciolo G. Liposome-protein corona in a physiological environment: challenges and opportunities for targeted delivery of nanomedicines. Nanomedicine. 2015;11:543–57.  https://doi.org/10.1016/j.nano.2014.11.003.CrossRefGoogle Scholar
  8. 8.
    Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer SK, Stauber RH. The nanoparticle biomolecule corona: lessons learned—challenge accepted? Chem Soc Rev. 2015;44:6094–121.  https://doi.org/10.1039/c5cs00217f.CrossRefGoogle Scholar
  9. 9.
    Tavano R, Gabrielli L, Lubian E, Fedeli C, Visentin S, Polverino De Laureto P, et al. C1q-mediated complement activation and C3 opsonization trigger recognition of stealth poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes. ACS Nano. 2018;12:5834–47.  https://doi.org/10.1021/acsnano.8b01806.CrossRefGoogle Scholar
  10. 10.
    Caracciolo G, Farokhzad OC, Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017;35:257–64.  https://doi.org/10.1016/j.tibtech.2016.08.011.CrossRefGoogle Scholar
  11. 11.
    Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8:137–43.  https://doi.org/10.1038/nnano.2012.237.CrossRefGoogle Scholar
  12. 12.
    Zarschler K, Prapainop K, Mahon E, Rocks L, Bramini M, Kelly PM, et al. Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies. Nanoscale. 2014;6:6046–56.  https://doi.org/10.1039/c4nr00595c.CrossRefGoogle Scholar
  13. 13.
    Tonigold M, Simon J, Estupiñán D, Kokkinopoulou M, Reinholz J, Kintzel U, et al. Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nat Nanotechnol. 2018;13:862–9.  https://doi.org/10.1038/s41565-018-0171-6.CrossRefGoogle Scholar
  14. 14.
    Kelly PM, Åberg C, Polo E, O’Connell A, Cookman J, Fallon J, et al. Mapping protein binding sites on the biomolecular corona of nanoparticles. Nat Nanotechnol. 2015;10:472–9.  https://doi.org/10.1038/nnano.2015.47.CrossRefGoogle Scholar
  15. 15.
    Castagnola V, Zhao W, Boselli L, Lo Giudice MC, Meder F, Polo E, et al. Biological recognition of graphene nanoflakes. Nat Commun. 2018;9:1577.  https://doi.org/10.1038/s41467-018-04009-x.CrossRefGoogle Scholar
  16. 16.
    Herda LM, Hristov DR, Lo GMC, Polo E, Dawson KA. Mapping of molecular structure of the nanoscale surface in bionanoparticles. J Am Chem Soc. 2017;139:111–4.  https://doi.org/10.1021/jacs.6bl2297.CrossRefGoogle Scholar
  17. 17.
    Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, et al. Effect of polyethyleneglycol (PEG) chain length on the bio-nano- interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale. 2014;6:2782–92.  https://doi.org/10.1039/c3nr05559k.CrossRefGoogle Scholar
  18. 18.
    Xiao W, Gao H. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int J Pharm. 2018;552:328–39.  https://doi.org/10.1016/j.ijpharm.2018.10.011.CrossRefGoogle Scholar
  19. 19.
    Carrillo-Carrion C, Carril M, Parak WJ. Techniques for the experimental investigation of the protein corona. Curr Opin Biotechnol. 2017;46:106–13.  https://doi.org/10.1016/j.copbio.2017.02.009.CrossRefGoogle Scholar
  20. 20.
    Capriotti AL, Caracciolo G, Caruso G, Cavaliere C, Pozzi D, Samperi R, et al. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer. Anal Bioanal Chem. 2010;398:2895–903.  https://doi.org/10.1007/s00216-010-4104-y.CrossRefGoogle Scholar
  21. 21.
    Capriotti AL, Caracciolo G, Cavaliere C, Colapicchioni V, Piovesana S, Pozzi D, et al. Analytical methods for characterizing the nanoparticle-protein corona. Chromatographia. 2014;77:755–69.CrossRefGoogle Scholar
  22. 22.
    Benne N, van Duijn J, Lozano Vigario F, Leboux RJT, van Veelen P, Kuiper J, et al. Anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) liposomes induce antigen-specific regulatory T cells and prevent atherosclerosis in mice. J Control Release. 2018;291:135–46.  https://doi.org/10.1016/j.jconrel.2018.10.028.CrossRefGoogle Scholar
  23. 23.
    Guan J, Shen Q, Zhang Z, Jiang Z, Yang Y, Lou M, et al. Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption. Nat Commun. 2018;9:2982.  https://doi.org/10.1038/s41467-018-05384-1.CrossRefGoogle Scholar
  24. 24.
    Caracciolo G, Palchetti S, Digiacomo L, Chiozzi RZZ, Capriotti AL, Amenitsch H, et al. Human biomolecular corona of liposomal doxorubicin: the overlooked factor in anticancer drug delivery. ACS Appl Mater Interfaces. 2018;10:22951–62.  https://doi.org/10.1021/acsami.8b04962.CrossRefGoogle Scholar
  25. 25.
    Arcella A, Palchetti S, Digiacomo L, Pozzi D, Capriotti AL, Frati L, et al. Brain targeting by liposome-biomolecular corona boosts anti-cancer efficacy of temozolomide in glioblastoma cells. ACS Chem Neurosci. 2018.  https://doi.org/10.1021/acschemneuro.8b00339.
  26. 26.
    Al-Ahmady ZS, Hadjidemetriou M, Gubbins J, Kostarelos K. Formation of protein corona in vivo affects drug release from temperature-sensitive liposomes. J Control Release. 2018;276:157–67.  https://doi.org/10.1016/j.jconrel.2018.02.038.CrossRefGoogle Scholar
  27. 27.
    Palchetti S, Pozzi D, Capriotti AL, La Barbera G, Chiozzi RZ, Digiacomo L, et al. Influence of dynamic flow environment on nanoparticle-protein corona: from protein patterns to uptake in cancer cells. Colloids Surfaces B Biointerfaces. 2017;153:263–71.  https://doi.org/10.1016/j.colsurfb.2017.02.037.CrossRefGoogle Scholar
  28. 28.
    Papi M, Caputo D, Palmieri V, Coppola R, Palchetti S, Bugli F, et al. Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale. 2017;9:10327–34.  https://doi.org/10.1039/c7nr03042h.CrossRefGoogle Scholar
  29. 29.
    Tretiakova DS, Onishchenko NR, Vostrova AG, Vodovozova EL. Interactions of liposomes carrying lipophilic prodrugs in the bilayer with blood plasma proteins. Russ J Bioorg Chem. 2017;43:678–89.  https://doi.org/10.1134/S1068162017060139.CrossRefGoogle Scholar
  30. 30.
    Digiacomo L, Cardarelli F, Pozzi D, Palchetti S, Digman MA, Gratton E, et al. An apolipoprotein-enriched biomolecular corona switches the cellular uptake mechanism and trafficking pathway of lipid nanoparticles. Nanoscale. 2017;9:17254–62.  https://doi.org/10.1039/c7nr06437c.CrossRefGoogle Scholar
  31. 31.
    Itoh N, Kimoto A, Yamamoto E, Higashi T, Santa T, Funatsu T, et al. High performance liquid chromatography analysis of 100-nm liposomal nanoparticles using polymer-coated, silica monolithic columns with aqueous mobile phase. J Chromatogr A. 2017;1484:34–40.  https://doi.org/10.1016/j.chroma.2016.12.080.CrossRefGoogle Scholar
  32. 32.
    Corbo C, Molinaro R, Taraballi F, Toledano Furman NE, Hartman KA, Sherman MB, et al. Unveiling the in vivo protein corona of circulating leukocyte-like carriers. ACS Nano. 2017;11:3262–73.  https://doi.org/10.1021/acsnano.7b00376.CrossRefGoogle Scholar
  33. 33.
    Hadjidemetriou M, Al-Ahmady Z, Kostarelos K. Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale. 2016;8:6948–57.  https://doi.org/10.1039/c5nr09158f.CrossRefGoogle Scholar
  34. 34.
    Corbo C, Molinaro R, Taraballi F, Toledano Furman NE, Sherman MB, Parodi A, et al. Effects of the protein corona on liposome-liposome and liposome-cell interactions. Int J Nanomedicine. 2016;11:3049–63.  https://doi.org/10.2147/IJN.S109059.CrossRefGoogle Scholar
  35. 35.
    Amici A, Caracciolo G, Digiacomo L, Gambini V, Marchini C, Tilio M, et al. In vivo protein corona patterns of lipid nanoparticles. RSC Adv. 2017;7:1137–45.  https://doi.org/10.1039/c6ra25493d.CrossRefGoogle Scholar
  36. 36.
    Bigdeli A, Palchetti S, Pozzi D, Hormozi-Nezhad MR, Baldelli Bombelli F, Caracciolo G, et al. Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties. ACS Nano. 2016;10:3723–37.  https://doi.org/10.1021/acsnano.6b00261.CrossRefGoogle Scholar
  37. 37.
    Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Piovesana S, La Barbera G, et al. The liposome-protein corona in mice and humans and its implications for in vivo delivery. J Mater Chem B. 2014;2:7419–28.  https://doi.org/10.1039/c4tb01316f.CrossRefGoogle Scholar
  38. 38.
    Pozzi D, Caracciolo G, Digiacomo L, Colapicchioni V, Palchetti S, Capriotti AL, et al. The biomolecular corona of nanoparticles in circulating biological media. Nanoscale. 2015;7:13958–66.  https://doi.org/10.1039/c5nr03701h.CrossRefGoogle Scholar
  39. 39.
    Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Piovesana S, Amenitsch H, et al. Lipid composition: a “key factor” for the rational manipulation of the liposome-protein corona by liposome design. RSC Adv. 2015;5:5967–75.  https://doi.org/10.1039/c4ra13335h.CrossRefGoogle Scholar
  40. 40.
    Pozzi D, Caracciolo G, Capriotti AL, Cavaliere C, La Barbera G, Anchordoquy TJ, et al. Surface chemistry and serum type both determine the nanoparticle-protein corona. J Proteome. 2015;119:209–17.  https://doi.org/10.1016/j.jprot.2015.02.009.CrossRefGoogle Scholar
  41. 41.
    Hadjidemetriou M, Al-Ahmady Z, Mazza M, Collins RF, Dawson K, Kostarelos K. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano. 2015;9:8142–56.  https://doi.org/10.1021/acsnano.5b03300.CrossRefGoogle Scholar
  42. 42.
    Palchetti S, Colapicchioni V, Digiacomo L, Caracciolo G, Pozzi D, Capriotti AL, et al. The protein corona of circulating PEGylated liposomes. Biochim Biophys Acta Biomembr. 2016;1858:189–96.  https://doi.org/10.1016/j.bbamem.2015.11.012.CrossRefGoogle Scholar
  43. 43.
    Mahmoudi M. Debugging nano–bio interfaces: systematic strategies to accelerate clinical translation of nanotechnologies. Trends Biotechnol. 2018;36:755–69.  https://doi.org/10.1016/j.tibtech.2018.02.014.CrossRefGoogle Scholar
  44. 44.
    Wang M, Gustafsson OJR, Pilkington EH, Kakinen A, Javed I, Faridi A, et al. Nanoparticle–proteome in vitro and in vivo. J Mater Chem B. 2018;6:6026–41.  https://doi.org/10.1039/C8TB01634H.CrossRefGoogle Scholar
  45. 45.
    Papi M, Caracciolo G. Principal component analysis of personalized biomolecular corona data for early disease detection. Nano Today. 2018;21:14–7.  https://doi.org/10.1016/j.nantod.2018.03.001.CrossRefGoogle Scholar
  46. 46.
    Hadjidemetriou M, Kostarelos K. Nanomedicine: evolution of the nanoparticle corona. Nat Nanotechnol. 2017;12:288–90.  https://doi.org/10.1038/nnano.2017.61.CrossRefGoogle Scholar
  47. 47.
    Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlbäck B, Dawson KA, et al. Complete high-density lipoproteins in nanoparticle corona. FEBS J. 2009;276:3372–81.  https://doi.org/10.1111/j.1742-4658.2009.07062.x.CrossRefGoogle Scholar
  48. 48.
    Müller J, Prozeller D, Ghazaryan A, Kokkinopoulou M, Mailänder V, Morsbach S, et al. Beyond the protein corona—lipids matter for biological response of nanocarriers. Acta Biomater. 2018;71:420–31.  https://doi.org/10.1016/j.actbio.2018.02.036.CrossRefGoogle Scholar
  49. 49.
    Raesch SS, Tenzer S, Storck W, Rurainski A, Selzer D, Ruge CA, et al. Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid composition. ACS Nano. 2015;9:11872–85.  https://doi.org/10.1021/acsnano.5b04215.CrossRefGoogle Scholar
  50. 50.
    Lee JY, Wang H, Pyrgiotakis G, DeLoid GM, Zhang Z, Beltran-Huarac J, et al. Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2018;410:6155–64.  https://doi.org/10.1007/s00216-018-1145-0.CrossRefGoogle Scholar
  51. 51.
    Martel J, Wu CY, Hung CY, Wong TY, Cheng AJ, Cheng ML, et al. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis. Nanoscale. 2016;8:5537–45.  https://doi.org/10.1039/c5nr08116e.CrossRefGoogle Scholar
  52. 52.
    Pink M, Verma N, Kersch C, Schmitz-Spanke S. Identification and characterization of small organic compounds within the corona formed around engineered nanoparticles. Environ Sci Nano. 2018;5:1420–7.  https://doi.org/10.1039/c8en00161h.CrossRefGoogle Scholar
  53. 53.
    Shannahan J. The biocorona: a challenge for the biomedical application of nanoparticles. Nanotechnol Rev. 2017;6:345–53.  https://doi.org/10.1515/ntrev-2016-0098.CrossRefGoogle Scholar
  54. 54.
    Tavakol M, Montazeri A, Naghdabadi R, Hajipour MJ, Zanganeh S, Caracciolo G, et al. Disease-related metabolites affect protein-nanoparticle interactions. Nanoscale. 2018;10:7108–15.  https://doi.org/10.1039/c7nr09502c.CrossRefGoogle Scholar
  55. 55.
    Riley NM, Sikora JW, Seckler HS, Greer JB, Fellers RT, Leduc RD, et al. The value of activated ion electron transfer dissociation for high-throughput top-down characterization of intact proteins. Anal Chem. 2018;90:8553–60.  https://doi.org/10.1021/acs.analchem.8b01638.CrossRefGoogle Scholar
  56. 56.
    Smith LM, Kelleher NL. Proteoforms as the next proteomics currency. Science. 2018;359:1106–7.  https://doi.org/10.1126/science.aat1884.CrossRefGoogle Scholar
  57. 57.
    Schaffer LV, Rensvold JW, Shortreed MR, Cesnik AJ, Jochem A, Scalf M, et al. Identification and quantification of murine mitochondrial proteoforms using an integrated top-down and intact-mass strategy. J Proteome Res. 2018;17:3526–36.  https://doi.org/10.1021/acs.jproteome.8b00469.CrossRefGoogle Scholar
  58. 58.
    Cai W, Tucholski T, Chen B, Alpert AJ, McIlwain S, Kohmoto T, et al. Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal Chem. 2017;89:5467–75.  https://doi.org/10.1021/acs.analchem.7b00380.CrossRefGoogle Scholar
  59. 59.
    Wan S, Kelly PM, Mahon E, Stöckmann H, Rudd PM, Caruso F, et al. The “sweet” side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. ACS Nano. 2015;9:2157–66.  https://doi.org/10.1021/nn506060q.CrossRefGoogle Scholar
  60. 60.
    McCool EN, Lubeckyj RA, Shen X, Chen D, Kou Q, Liu X, et al. Deep top-down proteomics using capillary zone electrophoresis-tandem mass spectrometry: identification of 5700 proteoforms from the Escherichia coli proteome. Anal Chem. 2018;90:5529–33.  https://doi.org/10.1021/acs.analchem.8b00693.CrossRefGoogle Scholar
  61. 61.
    Kim YI, Cho JY. Gel-based proteomics in disease research: is it still valuable? Biochim Biophys Acta Proteins Proteomics. 2019;1867:9–16.CrossRefGoogle Scholar
  62. 62.
    Cui L, Lu H, Lee YH. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom Rev. 2018;37:772–92.  https://doi.org/10.1002/mas.21562.CrossRefGoogle Scholar
  63. 63.
    Rustam YH, Reid GE. Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal Chem. 2018;90:374–97.  https://doi.org/10.1021/acs.analchem.7b04836.CrossRefGoogle Scholar
  64. 64.
    La Barbera G, Antonelli M, Cavaliere C, Cruciani G, Goracci L, Montone CM, et al. Delving into the polar lipidome by optimized chromatographic separation, high-resolution mass spectrometry, and comprehensive identification with Lipostar: microalgae as case study. Anal Chem. 2018;90:12230–8.  https://doi.org/10.1021/acs.analchem.8b03482.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anna Laura Capriotti
    • 1
  • Chiara Cavaliere
    • 1
  • Susy Piovesana
    • 1
    Email author
  1. 1.Department of ChemistrySapienza Università di RomaRomeItaly

Personalised recommendations