Analytical and Bioanalytical Chemistry

, Volume 411, Issue 10, pp 2121–2129 | Cite as

Enantioseparation of chiral β-blockers using polynorepinephrine-coated nanoparticles and chiral capillary electrophoresis

  • Jia Wu
  • Xue Xiao
  • Zhenqun Li
  • Li JiaEmail author
Research Paper


A method of combining magnetic solid-phase separation (MSPE) and chiral capillary electrophoresis (CE) is developed for enantioseparation of trace amounts of β-blockers. Polynorepinephrine-functionalized magnetic nanoparticles (polyNE-MNPs) are synthesized and applied to simultaneously extract three β-blockers (carteolol, metoprolol, and betaxolol). The prepared polyNE-MNPs are spherical with a diameter of 198 ± 17 nm and the thickness of the polyNE coating is about 14 nm. PolyNE possesses abundant catechol hydroxyl and secondary amine groups, endowing the MNPs with excellent hydrophilicity. Under the optimum conditions, the extraction efficiencies of polyNE-MNPs for β-blockers are in the range of 89.6 to 100%, with relative standard deviations (RSDs) below 3.5%. The extraction process can be finished in 4 min. Field-enhanced sample injection (FESI) in chiral CE is constructed to further enhance the sensitivities of β-blocker enantiomers. The limits of detection for β-blocker enantiomers by the FESI-CE with polyNE-MNPs are in the range of 0.401 to 1.59 ng mL−1. The practicability of this method in real samples is evaluated by analysis of human urine samples. The recoveries for each enantiomer of β-blockers in the real samples range from 89.5 to 92.8%, with RSDs ranging from 0.37 to 5.9%. The whole detection process can be finished in less than 0.5 h. The method demonstrates its great potential in the pharmacokinetic and pharmacodynamic studies of chiral drugs in humans.

Graphical abstract


β-Blocker Polynorepinephrine Magnetic separation Capillary electrophoresis Field-enhanced sample injection Enantioseparation 


Funding information

This study received financial support from the National Natural Science Foundation of China (21675056) and the Scientific and Technological Planning Project of Guangzhou City (201805010002).

Compliance with ethical standards

We obtained the informed consent of all individual participants whom urine samples were obtained from. The studies were approved by the Scientific Research Ethics Committee of South China Normal University and were performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2019_1641_MOESM1_ESM.pdf (965 kb)
ESM 1 (PDF 965 kb)


  1. 1.
    Caban M, Stepnowski P, Kwiatkowski M, Migowska N, Kumirska J. Determination of β-blockers and β-agonists using gas chromatography and gas chromatography-mass spectrometry - a comparative study of the derivatization step. J Chromatogr A. 2011;1218:8110–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Toda N, Hayashi S, Hatano Y, Okunishi H, Miyazaki M. Selectivity and steric effects of metoprolol isomers on isolated rabbit atria, arteries and tracheal muscles. J Pharmacol Exp Ther. 1978;207:311–9.PubMedGoogle Scholar
  3. 3.
    Nathanson JA. Stereospecificity of beta adrenergic antagonists: R-enantiomers show increased selectivity for beta-2 receptors in ciliary process. J Pharmacol Exp Ther. 1988;245:94–101.PubMedGoogle Scholar
  4. 4.
    Imre S, Ormenişan A, Tero-Vescan A, Muntean D-L, Vari C-E. HPLC enantioseparation of β-blockers on ovomucoid stationary phase. J Chromatogr Sci. 2016;54:1578–83.CrossRefGoogle Scholar
  5. 5.
    Ali I, Gaitonde VD, Aboul-Enein HY, Hussain A. Chiral separation of β-adrenergic blockers on CelluCoat column by HPLC. Talanta. 2009;78:458–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Rahim NY, Tay KS, Mohamad S. β-Cyclodextrin functionalized ionic liquid as chiral stationary phase of high performance liquid chromatography for enantioseparation of β-blockers. J Incl Phenom Macrocycl Chem. 2016;85:303–15.CrossRefGoogle Scholar
  7. 7.
    Paik M-J, Nguyen D-T, Kim K-R. N-Menthoxycarbonylation combined with trimethylsilylation for enantioseparation of β-blockers by achiral dual-column gas chromatography. J Chromatogr A. 2006;1103:177–81.CrossRefPubMedGoogle Scholar
  8. 8.
    Del Bubba M, Checchini L, Lepri L. Thin-layer chromatography enantioseparations on chiral stationary phases: a review. Anal Bioanal Chem. 2013;405:533–54.CrossRefPubMedGoogle Scholar
  9. 9.
    Zheng J, Norton D, Shamsi SA. Fabrication of internally tapered capillaries for capillary electrochromatography electrospray ionization mass spectrometry. Anal Chem. 2006;78:1323–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Zheng J, Shamsi SA. Simultaneous enantioseparation and sensitive detection of eight β-blockers using capillary electrochromatography-electrospray ionization-mass spectrometry. Electrophoresis. 2006;27:2139–51.CrossRefPubMedGoogle Scholar
  11. 11.
    Huang L, Lin J-M, Yu L, Xu L, Chen G. Field-amplified on-line sample stacking for simultaneous enantioseparation and determination of some β-blockers using capillary electrophoresis. Electrophoresis. 2008;29:3588–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang H, Shao H, A Y, Zhang Z. Optimized conditions of enantioseparation of β-blockers by CZE using carboxymethyl-β-cyclodextrin as chiral selector. Chromatographia. 2008;68:653–8.CrossRefGoogle Scholar
  13. 13.
    Jin Y, Chen C, Meng L, Chen J, Li M, Zhu Z. Simultaneous and sensitive capillary electrophoretic enantioseparation of three β-blockers with the combination of achiral ionic liquid and dual CD derivatives. Talanta. 2012;89:149–54.CrossRefPubMedGoogle Scholar
  14. 14.
    Delamoye M, Duverneuil C, Paraire F, De Mazancourt P, Alvarez J-C. Simultaneous determination of thirteen β-blockers and one metabolite by gradient high-performance liquid chromatography with photodiode-array UV detection. Forensic Sci Int. 2004;141:23–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang L, Su X, Zhang C, Ouyang L, Xie Q, Ma M, et al. Extraction and preconcentration of β-blockers in human urine for analysis with high performance liquid chromatography by means of carrier-mediated liquid phase microextraction. Talanta. 2010;82:984–92.CrossRefPubMedGoogle Scholar
  16. 16.
    Abuzooda T, Amini A, Abdel-Rehim M. Graphite-based microextraction by packed sorbent for online extraction of β-blockers from human plasma samples. J Chromatogr B. 2015;992:86–90.CrossRefGoogle Scholar
  17. 17.
    Hu X, Pan J, Hu Y, Li G. Preparation and evaluation of propranolol molecularly imprinted solid-phase microextraction fiber for trace analysis of β-blockers in urine and plasma samples. J Chromatogr A. 2009;1216:190–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Boonjob W, Sklenářová H, Lara FJ, García-Campaña AM, Solich P. Retention and selectivity of basic drugs on solid-phase extraction sorbents: application to direct determination of β-blockers in urine. Anal Bioanal Chem. 2014;406:4207–15.CrossRefPubMedGoogle Scholar
  19. 19.
    He J, Huang M, Wang D, Zhang Z, Li G. Magnetic separation techniques in sample preparation for biological analysis: a review. J Pharm Biomed Anal. 2014;101:84–101.CrossRefPubMedGoogle Scholar
  20. 20.
    Xu S, Jiang C, Lin Y, Jia L. Magnetic nanoparticles modified with polydimethylsiloxane and multi-walled carbon nanotubes for solid-phase extraction of fluoroquinolones. Microchim Acta. 2012;179:257–64.CrossRefGoogle Scholar
  21. 21.
    Wang Z, Zhang X, Jiang S, Guo X. Magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the simultaneous enantiomeric analysis of five β-blockers in the environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry. Talanta. 2018;180:98–107.CrossRefPubMedGoogle Scholar
  22. 22.
    Kang SM, Rho J, Choi IS, Messersmith PB, Lee H. Norepinephrine: material-independent, multifunctional surface modification reagent. J Am Chem Soc. 2009;131:13224–5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hong S, Kim J, Na YS, Park J, Kim S, Singha K, et al. Poly(norepinephrine): ultrasmooth material-independent surface chemistry and nanodepot for nitric oxide. Angew Chem Int Ed. 2013;52:9187–91.CrossRefGoogle Scholar
  24. 24.
    Chwatko M, Arena JT, McCutcheon JR. Norepinephrine modified thin film composite membranes for forward osmosis. Desalination. 2017;423:157–64.CrossRefGoogle Scholar
  25. 25.
    Qiu J, Chen G, Liu S, Zhang T, Wu J, Wang F, et al. Bioinspired polyelectrolyte-assembled graphene-oxide-coated C18 composite solid-phase microextraction fibers for in vivo monitoring of acidic pharmaceuticals in fish. Anal Chem. 2016;88:5841–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Xuan S, Wang Y-XJ, Yu JC, Leung KC-F. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem Mater. 2009;21:5079–87.CrossRefGoogle Scholar
  27. 27.
    Yang D, Wang X, Ai Q, Shi J, Jiang Z. Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly(dopamine) and poly(norepinephrine). RSC Adv. 2015;5:42461–7.CrossRefGoogle Scholar
  28. 28.
    Martín M, Salazar P, Villalonga R, Campuzano S, Pingarrón JM, González-Mora JL. Preparation of core-shell Fe3O4@poly(dopamine) magnetic nanoparticles for biosensor construction. J Mater Chem B. 2014;2:739–46.CrossRefGoogle Scholar
  29. 29.
    Chantasart D, Hao J, Li SK. Evaluation of skin permeation of β-blockers for topical drug delivery. Pharm Res. 2013;30:866–77.CrossRefPubMedGoogle Scholar
  30. 30.
    Seidi S, Yamini Y, Rezazadeh M. Electrically enhanced microextraction for highly selective transport of three β-blocker drugs. J Pharm Biomed Anal. 2011;56:859–66.CrossRefPubMedGoogle Scholar
  31. 31.
    Akbay C, Rizvi SAA, Shamsi SA. Simultaneous enantioseparation and tandem UV-MS detection of eight β-blockers in micellar electrokinetic chromatography using a chiral molecular micelle. Anal Chem. 2005;77:1672–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Regårdh C-G, Johnsson G. Clinical pharmacokinetics of metoprolol. Clin Pharmacokinet. 1980;5:557–69.CrossRefPubMedGoogle Scholar
  33. 33.
    Bianchetti G, Thiercelin J-F, Thenot J-P. Pharmacokinetics of betaxolol in middle aged patients. Eur J Clin Pharmacol. 1986;31:231–3.CrossRefPubMedGoogle Scholar
  34. 34.
    Amemiya M, Tabei K, Furuya H, Sakairi Y, Asano Y. Pharmacokinetics of carteolol in patients with impaired renal function. Eur J Clin Pharmacol. 1992;43:417–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of BiophotonicsSouth China Normal UniversityGuangzhouChina

Personalised recommendations