Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 9, pp 1761–1787 | Cite as

Gas sensors based on mass-sensitive transducers part 1: transducers and receptors—basic understanding

  • Alexandru OpreaEmail author
  • Udo Weimar
Review

Abstract

The scientific interest in gas sensors is continuously increasing because of their environmental, medical, industrial, and domestic applications. This has resulted in an increasing number of investigations being reported in the literature and communicated at conferences. The present review, organized in two parts, addresses the peculiarities of gas sensors based on mass-sensitive transducers, starting with their structure and functionality and progressing to implementation and specific use. In this first part of the review, we discuss the constructional peculiarities and operation regions and the physical and chemical processes governing the reception and transduction functions and the way in which they influence the sensor sensing parameters/features. Scientific outcomes and trends in research into gas sensors based on mass sensitive transducers are also considered.

Keywords

Gravimetric gas sensors Mass-sensitive transducers Sensing interactions Sensing materials 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Research involving humans and/or animals

The article is a review and involved no humans or animals in investigations performed by the authors themselves.

References

  1. 1.
    Hulanicki A, Glab S, Ingman F. Chemical sensors: definitions and classification. Pure Appl Chem. 1991;63(9):1247–50.Google Scholar
  2. 2.
    Szulczyński B, Gębicki J. Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments. 2017;4(1):21.Google Scholar
  3. 3.
    King WH. Piezoelectric sorption detector. Anal Chem. 1964;36(9):1735–9.Google Scholar
  4. 4.
    Stanford Research Systems. Quartz Crystal Microbalance QCM200. https://www.thinksrs.com/products/qcm200.html
  5. 5.
    McNaught AD, Wilkinson A. Compendium of chemical terminology -IUPAC recommendations (IUPAC chemical data). 2nd ed. Wiley; 1997.Google Scholar
  6. 6.
    Currie LA. Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure Appl Chem. 1995;67(10):1699–723.Google Scholar
  7. 7.
    Vessman J, Stefan RI, van Staden JF, Danzer K, Lindner W, Burns DT, et al. Selectivity in analytical chemistry (IUPAC recommendations 2001). Pure Appl Chem. 2001;73(8):1381–6.Google Scholar
  8. 8.
    Gauglitz G. Analytical evaluation of sensor measurements. Anal Bioanal Chem. 2018;410(1):5–13.Google Scholar
  9. 9.
    Ayad MM, Salahuddin NA, Minisy IM, Amer WA. Chitosan/polyaniline nanofibers coating on the quartz crystal microbalance electrode for gas sensing. Sens Actuators B. 2014;202:144–53.  https://doi.org/10.1016/j.snb.2014.05.046.Google Scholar
  10. 10.
    Sayago I, Matatagui D, Fernández MJ, Fontecha JL, Jurewicz I, Garriga R, et al. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants. Talanta. 2016;148:393–400.  https://doi.org/10.1016/j.talanta.2015.10.069.Google Scholar
  11. 11.
    Gläser M, Borys M. Precision mass measurements. Rep Prog Phys. 2009;72(12):126101.Google Scholar
  12. 12.
    Curie J, Curie P. Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclines. C R Hebd Seances Acad Sci. 1880;91:294–5.Google Scholar
  13. 13.
    Lippmann G. Principe de la conservation de l’électricité. Ann Chim Phys. 1881;24:145–78.Google Scholar
  14. 14.
    Bower AF. Applied mechanics of solids. Boca Raton: CRC Press; 2009.Google Scholar
  15. 15.
    Jackson JD. Classical electrodynamics. 3rd ed. Wiley; 1998.Google Scholar
  16. 16.
    Kittel C. Introduction to solid state physics. 8th ed. Wiley; 2004.Google Scholar
  17. 17.
    Ikeda T. Fundamentals of piezoelectricity. 1st ed. Oxford: Oxford University Press; 1990.Google Scholar
  18. 18.
    Rossetti GAJ. Thermodynamic theory. In: Heywang W, Lubitz K, Wersing W, editors. Piezoelectricity. Berlin: Springer; 2008. p. 293–515.Google Scholar
  19. 19.
    Devonshire AF. Theory of ferroelectrics. Adv Phys. 1954;3(10):85–130.  https://doi.org/10.1080/00018735400101173.Google Scholar
  20. 20.
    Resta R. Electrical polarization and orbital magnetization: the modern theories. J Phys Condens Matter. 2010;22(12):123201.Google Scholar
  21. 21.
    Martin R. Piezoelectricity. Phys Rev B. 1972;5(4):1607–13.  https://doi.org/10.1103/PhysRevB.5.1607.Google Scholar
  22. 22.
    Munn RW. Theory of piezoelectricity, electrostriction, and pyroelectricity in molecular crystals. J Chem Phys. 2010;132(10):104512.  https://doi.org/10.1063/1.3340405.Google Scholar
  23. 23.
    Cohen RE. First-principles theories of piezoelectric materials. In: Heywang W, Lubitz K, Wersing W, editors. Piezoelectricity. Berlin: Springer; 2008. p. 471–92.Google Scholar
  24. 24.
    Shimamura K, Takeda H, Kohno T, Fukuda T. Growth and characterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications. J Cryst Growth. 1996;163(4):388–92.Google Scholar
  25. 25.
    Fritze H, Tuller HL. Langasite for high-temperature bulk acoustic wave applications. Appl Phys Lett. 2001;78(7):976–7.  https://doi.org/10.1063/1.1345797.Google Scholar
  26. 26.
    Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys. 1959;155(2):206–22.  https://doi.org/10.1007/BF01337937.
  27. 27.
    Janata J. Principles of Chemical Sensors. second. Dordrecht, Heidelberg, London, New York: Springer; 2009. 373 p.Google Scholar
  28. 28.
    Barsan N, Gauglitz G, Oprea A, Ostertag E, Proll G, Rebner K, et al. Chemical and biochemical sensors, 1. Fundamentals. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2016. p. 1–81.  https://doi.org/10.1002/14356007.b06_121.pub2.
  29. 29.
    Lu C. In: Lu C, Czanderna AW, editors. Theory and practice of the quartz crystal microbalance. Amsterdam: Elsevier; 1984. p. 19–61.Google Scholar
  30. 30.
    Mecea VM. Is quartz crystal microbalance really a mass sensor? Sens Actuators A. 2006;128(2):270–7.Google Scholar
  31. 31.
    Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellars ET, Frye GC, et al. Acoustic wave sensors - theory, design, and physico-chemical applications. San Diego: Elsevier. .Google Scholar
  32. 32.
    Johannsmann D. The quartz crystal microbalance in soft matter research. Cham: Springer. 2015.  https://doi.org/10.1007/978-3-319-07836-6.
  33. 33.
    Butterworth S. On electrically-maintained vibrations. Proc Phys Soc Lond. 1914;27:410–24.Google Scholar
  34. 34.
    Van Dyke KS. The electric network equivalent of piezoelectric resonators. Phys Rev. 1925;25(6):895.Google Scholar
  35. 35.
    Van Dyke KS. The piezo-electric resonator and its equivalent network. Proc Inst Radio Eng. 1928;16:742–64.Google Scholar
  36. 36.
    Mason WP. Piezoelectric crystals and their applications to ultrasonics. 1st ed. New York: Van Nostrand; 1950.Google Scholar
  37. 37.
    Reed CE, Kanazawa KK, Kaufman JH. Physical description of a viscoelastically loaded AT-cut quartz resonator. J Appl Phys. 1990;68(5):1993–2001.  https://doi.org/10.1063/1.346548.Google Scholar
  38. 38.
    Lucklum R, Hauptmann P. Transduction mechanism of acoustic wave based chemical and biochemical sensors. Meas Sci Technol. 2003;14(11):1854–64.Google Scholar
  39. 39.
    Martin SJ, Bandey HL, Cernosek RW, Hillman AR, Brown MJ. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance. Anal Chem. 2000;72(1):141–9.Google Scholar
  40. 40.
    Janshoff A, Galla HJ, Steinem C. Piezoelectric mass-sensing devices as biosensors—an alternative to optical biosensors? Angew Chem Int Ed. 2010;32(6):4004.Google Scholar
  41. 41.
    Ushimi Y, Ito Y, Horiuchi H, Kadota M, Nozaki Y, Hotta Y, et al. Quartz crystal microbalance sensor for NH3 gas with compensation of humidity drift. Electron Commun Jpn. 2015;98(6):1–7.  https://doi.org/10.1002/ecj.11653.Google Scholar
  42. 42.
    Rayleigh L. On waves propagated along the plane surface of an elastic solid. Proc Lond Math Soc. 1885;s1-17(1):4–11.  https://doi.org/10.1112/plms/s1-17.1.4.Google Scholar
  43. 43.
    White RM, Voltmer FW. Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett. 1965;7(12):314–6.  https://doi.org/10.1063/1.1754276.Google Scholar
  44. 44.
    Wohltjen H, Dessy R. Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description. Anal Chem. 1979;51(9):1458–64.  https://doi.org/10.1021/ac50045a024.Google Scholar
  45. 45.
    Wohltjen H. Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sensors Actuators. 1984;5(4):307–25.Google Scholar
  46. 46.
    Grate JW, Martin SJ, White RM. Acoustic wave microsensors. Anal Chem. 1993;65(21):940A–8A.  https://doi.org/10.1021/ac00069a728.Google Scholar
  47. 47.
    Grate JW, Martin SJ, White RM. Acoustic wave microsensors part II. Anal Chem. 1993;65(22):987A–96A.  https://doi.org/10.1021/ac00070a717.Google Scholar
  48. 48.
    Martin SJ, Ricco AJ, Niemczyk TM, Frye GC. Characterization of SH acoustic plate mode liquid sensors. Sensors Actuators. 1989;20(3):253–68.Google Scholar
  49. 49.
    Lamb H. On waves in an elastic plate. Proc R Soc A Math Phys Eng Sci. 1917;93(648):114–28.  https://doi.org/10.1098/rspa.1917.0008.Google Scholar
  50. 50.
    Grate JW, Klusty M. Surface acoustic wave vapor sensors based on resonator devices. Anal Chem. 1991;63(17):1719–27.  https://doi.org/10.1021/ac00017a013.Google Scholar
  51. 51.
    Caliendo C, Verardi P, Verona E, D’Amico A, Di Natale C, Saggio G, et al. Advances in SAW based gas sensors. Smart Mater Struct. 1997;6(6):689–99.Google Scholar
  52. 52.
    Gronewold TMA. Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges. Anal Chim Acta. 2007;603(2):119–28.Google Scholar
  53. 53.
    Ben Youssef I, Alem H, Sarry F, Elmazria O, Jimenez Rioboo R, Arnal-Hérault C, et al. Functional poly(urethane-imide)s containing Lewis bases for SO2 detection by Love surface acoustic wave gas micro-sensors. Sensors Actuators B Chem. 2013;185:309–20.  https://doi.org/10.1016/j.snb.2013.04.120.Google Scholar
  54. 54.
    Ippolito SJ, Kandasamy S, Kalantar-zadeh K, Wlodarski W, Galatsis K, Kiriakidis G, et al. Highly sensitive layered ZnO/LiNbO3 SAW device with InOx selective layer for NO2 and H2 gas sensing. Sensors Actuators B Chem. 2005;111(112):207–12.  https://doi.org/10.1016/j.snb.2005.07.046.Google Scholar
  55. 55.
    Zheng P, Chin T-L, Greve D, Oppenheim I, Malone V, Ashok T, et al. Langasite SAW device with gas-sensitive layer. In: 2010 IEEE international ultrasonics symposium: IEEE; 2010. p. 1462–5.Google Scholar
  56. 56.
    Stoney GG. The tension of metallic films deposited by electrolysis. Proc R Soc A Math Phys Eng Sci. 1909;82(553):172–5.  https://doi.org/10.1098/rspa.1909.0021.Google Scholar
  57. 57.
    Raiteri R, Grattarola M, Butt H-J, Skládal P. Micromechanical cantilever-based biosensors. Sensors Actuators B Chem. 2001;79(2–3):115–26.  https://doi.org/10.1016/S0925-4005(01)00856-5.Google Scholar
  58. 58.
    Chen GY, Thundat T, Wachter EA, Warmack RJ. Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J Appl Phys. 1995 Apr 15;77(8):3618–22 http://aip.scitation.org/doi/10.1063/1.359562.
  59. 59.
    Han SM, Benaroya H, Wei T. dynamics of transversely vibrating beams using four engineering theories. J Sound Vib. 1999;225(5):935–88.Google Scholar
  60. 60.
    Lange D, Hagleitner C, Hierlemann A, Brand O, Baltes H. Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds. Anal Chem. 2002;74(13):3084–95.  https://doi.org/10.1021/ac011269j.Google Scholar
  61. 61.
    Yu H, Li X, Gan X, Liu Y, Liu X, Xu P, et al. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement. J Micromech Microeng. 2009;1(4):045023.Google Scholar
  62. 62.
    Lavrik NV, Sepaniak MJ, Datskos PG. Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum. 2004;75(7):2229–53.Google Scholar
  63. 63.
    Lavrik NV, Datskos PG. Femtogram mass detection using photothermally actuated nanomechanical resonators. Appl Phys Lett. 2003;82(16):2697–9.  https://doi.org/10.1063/1.1569050.Google Scholar
  64. 64.
    Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P. Attogram detection using nanoelectromechanical oscillators. J Appl Phys. 2004;95(7):3694–703.  https://doi.org/10.1063/1.1650542.Google Scholar
  65. 65.
    Yang YT, Callegari C, Feng XL, Ekinci KL, Roukes ML. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 2006;6(4):583–6.  https://doi.org/10.1021/nl052134m.Google Scholar
  66. 66.
    Ekinci KL, Yang YT, Roukes ML. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys. 2004;95(5):2682–9.  https://doi.org/10.1063/1.1642738.Google Scholar
  67. 67.
    Ekinci KL, Roukes ML. Nanoelectromechanical systems. Rev Sci Instrum. 2005;76(6):061101.  https://doi.org/10.1063/1.1927327.Google Scholar
  68. 68.
    Ferrari V, Lucklum R. Overview of acoustic-wave microsensors. In: Vives AA, editor. Piezoelectric transducers and applications. Berlin: Springer; 2009. p. 39–62.  https://doi.org/10.1007/978-3-540-77508-9_2.Google Scholar
  69. 69.
    Abdolvand R, Bahreyni B, Lee JEY, Nabki F. Micromachined resonators: a review. Micromachines. 2016;7(9):160.Google Scholar
  70. 70.
    Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum. 1995;66(7):3924–30.  https://doi.org/10.1063/1.1145396.Google Scholar
  71. 71.
    Galliou S, Goryachev M, Bourquin R, Abbé P, Aubry JP, Tobar ME. Extremely low loss phonontrapping cryogenic acoustic cavities for future physical experiments. Sci Rep. 2013;3(1):2132.Google Scholar
  72. 72.
    Blom FR. Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J Vac Sci Technol B. 1992;10(1):19.  https://doi.org/10.1116/1.586300.Google Scholar
  73. 73.
    Uno T, Abe H, Miyamoto N, Jumonji H. Realization of miniature SAW resonators having high quality factor. Jpn J Appl Phys. 1981;20(S3):85.Google Scholar
  74. 74.
    Zhgoon S, Shvetsov A, Antcev I, Bogoslovsky S, Sapozhnikov G, Derkach M. Achieving ultimate Q-factors in SAW resonators on commercial LiNbO3 and LiTaO3 substrates. In: 2016 IEEE international ultrasonics symposium (IUS).: IEEE; 2016.Google Scholar
  75. 75.
    Mecea V, Bucur RV. The mechanism of the interaction of thin films with resonating quartz crystal substrates: the energy transfer model. Thin Solid Films. 1979;60(1):73–84.Google Scholar
  76. 76.
    Wenzel SW, White RM. Analytic comparison of the sensitivities of bulk-wave, surface-wave, and flexural plate-wave ultrasonic gravimetric sensors. Appl Phys Lett. 1989;54(20):1976–8.  https://doi.org/10.1063/1.101189.Google Scholar
  77. 77.
    Martin SJ, Frye GC, Senturia SD. Dynamics and response of polymer-coated surface acoustic wave devices: effect of viscoelastic properties and film resonance. Anal Chem. 1994;66(14):2201–19.  https://doi.org/10.1021/ac00086a003.Google Scholar
  78. 78.
    Lucklum R, Behling C, Hauptmann P. Role of mass accumulation and viscoelastic film properties for the response of acoustic-wave based chemical sensors. Anal Chem. 1999;71(13):2488–96.Google Scholar
  79. 79.
    Ferry JD. Viscoelastic properties of polymers. 1st ed. New York: Wiley; 1980.Google Scholar
  80. 80.
    Aklonis JJ, MacKnight WJ. Introduction to polymer viscoelasticity. 2nd ed. New York: Wiley; 1983.Google Scholar
  81. 81.
    Christiansen RM. Theory of viscoelasticity. 2nd ed. New York: Dover; 2010.Google Scholar
  82. 82.
    Kanazawa KK, Gordon JG. Frequency of a quartz microbalance in contact with liquid. Anal Chem. 1985;57(8):1770–1.  https://doi.org/10.1021/ac00285a062.Google Scholar
  83. 83.
    Kanazawa KK, Gordon JG. The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta. 1985;175(C):99–105.Google Scholar
  84. 84.
    White CC, Schrag JL. Theoretical predictions for the mechanical response of a model quartz crystal microbalance to two viscoelastic media: a thin sample layer and surrounding bath medium. J Chem Phys. 1999;111(24):11192–206.  https://doi.org/10.1063/1.480495.Google Scholar
  85. 85.
    Auld BA. Acoustic fields and waves in solids. 1st ed. New York: Wiley Interscience; 1973.Google Scholar
  86. 86.
    Tiersten HF, Sinha BK. A perturbation analysis of the attenuation and dispersion of surface waves. J Appl Phys. 1978;49(1):87–95.  https://doi.org/10.1063/1.324340.Google Scholar
  87. 87.
    Johannsmann D. Derivation of the shear compliance of thin films on quartz resonators from comparison of the frequency shifts on different harmonics: a perturbation analysis. J Appl Phys. 2001;89(11):6356–64.  https://doi.org/10.1063/1.1358317.Google Scholar
  88. 88.
    Martin SJ, Granstaff VE, Frye GC. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal Chem. 1991;63(20):2272–81.  https://doi.org/10.1021/ac00020a015.Google Scholar
  89. 89.
    Voinova MV, Rodahl M, Jonson M, Kasemo B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr. 1999;59(5):391.Google Scholar
  90. 90.
    Hayward GL, Thompson M. A transverse shear model of a piezoelectric chemical sensor. J Appl Phys. 1998;83(4):2194–201.  https://doi.org/10.1063/1.366956.Google Scholar
  91. 91.
    Benes E. Improved quartz crystal microbalance technique. J Appl Phys. 1984;56(3):608–26.  https://doi.org/10.1063/1.333990.Google Scholar
  92. 92.
    Granstaff VE, Martin SJ. Characterization of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers. J Appl Phys. 1994;75(3):1319–29.  https://doi.org/10.1063/1.356410.Google Scholar
  93. 93.
    Filiâtre C, Bardèche G, Valentin M. Transmission-line model for immersed quartz-crystal sensors. Sensors Actuators A. 1994;44(2):137–44.Google Scholar
  94. 94.
    Behling C, Lucklum R, Hauptmann P. Possibilities and limitations in quantitative determination of polymer shear parameters by TSM resonators. Sensors Actuators A. 1997;61(1–3):260–6.Google Scholar
  95. 95.
    Lucklum R, Hauptmann P. Transduction mechanism of acoustic wave based chemical and biochemical sensors. Meas Sci Technol. 2003;14(11):1854–64.Google Scholar
  96. 96.
    Kanazawa KK. Mechanical behaviour of films on the quartz microbalance. Faraday Discuss. 1997;107:77–90.Google Scholar
  97. 97.
    Lucklum R, Hauptmann P. Acoustic amplification. Response; 2000. p. 30–6.Google Scholar
  98. 98.
    Lucklum R, Hauptmann P. The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification. Sensors Actuators B Chem. 2000;70(1–3):30–6.Google Scholar
  99. 99.
    Grate JW, Zellers ET. The fractional free volume of the sorbed vapor in modeling the viscoelastic contribution to polymer-coated surface acoustic wave vapor sensor responses. Anal Chem. 2000;72(13):2861–8.  https://doi.org/10.1021/ac991192n.Google Scholar
  100. 100.
    Lucklum R, Behling C, Hauptmann P. Gravimetric and non-gravimetric chemical quartz crystal resonators. Sensors Actuators B Chem. 2000;65(1–3):277–83.  https://doi.org/10.1016/S09254005(99)00311-1.Google Scholar
  101. 101.
    Johannsmann D, Reviakine I, Rojas E, Gallego M. Effect of Sample Heterogeneity on the Interpretation of QCM(-D) Data: Comparison of Combined Quartz Crystal Microbalance/Atomic Force Microscopy Measurements with Finite Element Method Modelling. Anal Chem. 2008;80(23):8891–9 http://pubs.acs.org/doi/abs/10.1021/ac8013115.Google Scholar
  102. 102.
    Lucklum R, Hauptmann P. Acoustic microsensors—the challenge behind microgravimetry. Anal Bioanal Chem. 2006;384(3):667–82.  https://doi.org/10.1007/s00216-005-0236-x.Google Scholar
  103. 103.
    Zhang D, Wang D, Zong X, Dong G, Zhang Y. High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method. Sensors Actuators B Chem. 2018;262:531–41.Google Scholar
  104. 104.
    Hierlemann A, Baltes H. CMOS-based chemical microsensors. Analyst. 2003;128(1):15–28.Google Scholar
  105. 105.
    Thomas S, Racs Z, Cole M, Gardner JW. High-frequency one-port Colpitts SAWoscillator for chemical sensing. In: Privman V, editor. Proceedings of the sixth international conference on advances in circuits, electronics and microelectronics (CENICS 2013). Wilmington: ThinkMind; 2013. p. 13–7.Google Scholar
  106. 106.
    Liu H, Zhang C, Weng Z, Guo Y, Wang Z. Resonance frequency readout circuit for a 900 MHz SAW device. Sensors. 2017;17(9):2131.Google Scholar
  107. 107.
    Voinova MV. On Mass loading and dissipation measured with acoustic wave sensors: a review. J Sensors. 2009;2009:1–13.Google Scholar
  108. 108.
    Ohlsson G, Langhammer C, Zorić I, Kasemo B. A nanocell for quartz crystal microbalance and quartz crystal microbalance with dissipation-monitoring sensing. Rev Sci Instrum. 2009;80(8):083905.  https://doi.org/10.1063/1.3202207.Google Scholar
  109. 109.
    Esmeryan KD, Avramov ID, Radeva EI. Temperature behavior of solid polymer film coated quartz crystal microbalance for sensor applications. Sensors Actuators B Chem. 2015;216:240–6.  https://doi.org/10.1016/j.snb.2015.04.034.Google Scholar
  110. 110.
    Qiao X, Zhang X, Tian Y, Meng Y. Progresses on the theory and application of quartz crystal microbalance. Appl Phys Rev. 2016;3(3):031106.  https://doi.org/10.1063/1.4963312.Google Scholar
  111. 111.
    Hatch ER, Ballato A. Lateral-field excitation of quartz plates. In: 1983 ultrasonics symposium: IEEE; 1983. p. 512–5.Google Scholar
  112. 112.
    Chen Y-Y, Lai Y-T, Hsu C-H. Investigation of pseudo lateral field excited acoustic wave gas sensors with finite element method. Jpn J Appl Phys. 2014;53(7S):07KD01.Google Scholar
  113. 113.
    Kim J, Kim S, Ohashi T, Muramatsu H, Chang S-M, Kim W-S. Construction of simultaneous SPR and QCM sensing platform. Bioprocess Biosyst Eng. 2010;33(1):39–45.  https://doi.org/10.1007/s00449-009-0370-5.Google Scholar
  114. 114.
    Ricco AJ, Martin SJ, Zipperian TE. Surface acoustic wave gas sensor based on film conductivity changes. Sensors Actuators. 1985;8(4):319–33.Google Scholar
  115. 115.
    Jakubik W. Elemental theory of a SAW gas sensor based on electrical conductivity changes in bi-layer nanostructures. Sensors Actuators B Chem. 2014;203:511–6.Google Scholar
  116. 116.
    Jakubik W, Wrotniak J, Powroźnik P. Theoretical analysis of a surface acoustic wave gas sensor mechanism using electrical conductive bi-layer nanostructures. Sensors Actuators B Chem. 2018;262:947–52.Google Scholar
  117. 117.
    Barié N, Bücking M, Stahl U, Rapp M. Detection of coffee flavor ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW). Food Chem. 2015;176:212–8.Google Scholar
  118. 118.
    Jin X, Huang Y, Mason A, Zeng X. Multichannel monolithic quartz crystal microbalance gas sensor array. Anal Chem. 2009;81(2):595–603.  https://doi.org/10.1021/ac8018697.Google Scholar
  119. 119.
    Rabe J, Buttgenbach S, Schroder J, Hauptmann P. Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids. IEEE Sensors J. 2003;3(4):361–8.Google Scholar
  120. 120.
    Tao W, Lin P, Ai Y, Wang H, Ke S, Zeng X. Multichannel quartz crystal microbalance array: fabrication, evaluation, application in biomarker detection. Anal Biochem. 2016;494:85–92.  https://doi.org/10.1016/j.ab.2015.11.001.Google Scholar
  121. 121.
    Yan XF, Li DM, Hou CC, Wang X, Zhou W, Liu M, et al. Comparison of response towards NO2 and H2S of PPy and PPy/TiO2 as SAW sensitive films. Sensors Actuators B Chem. 2012;161(1):329–33.Google Scholar
  122. 122.
    Speller NC, Siraj N, Regmi BP, Marzoughi H, Neal C, Warner IM. Rational design of QCM-D virtual sensor arrays based on film thickness, viscoelasticity, and harmonics for vapor discrimination. Anal Chem. 2015;87(10):5156–66.  https://doi.org/10.1021/ac5046824.Google Scholar
  123. 123.
    Speller NC, Siraj N, Vaughan S, Speller LN, Warner IM. Assessment of QCM array schemes for mixture identification: citrus scented odors. RSC Adv. 2016;6(98):95378–86.  https://doi.org/10.1039/C6RA16988K.Google Scholar
  124. 124.
    Eichelbaum F, Borngräber R, Schröder J, Lucklum R, Hauptmann P. Interface circuits for quartz-crystal-microbalance sensors. Rev Sci Instrum. 1999;70(5):2537–45.  https://doi.org/10.1063/1.1149788.Google Scholar
  125. 125.
    Lucklum R, Eichelbaum F. Interface circuits for QCMsensors. In: Steinem C, Janshoff A, editors. Piezoelectric sensors. Berlin: Springer; 2007. p. 3–47.  https://doi.org/10.1007/5346_023.Google Scholar
  126. 126.
    Arnau A. A review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors. 2008;8(1):370–411.Google Scholar
  127. 127.
    Alassi A, Benammar M, Brett D. Quartz crystal microbalance electronic interfacing systems: a review. Sensors. 2017;17(12):2799.Google Scholar
  128. 128.
    Peschel A, Langhoff A, Johannsmann D. Coupled resonances allow studying the aging of adhesive contacts between a QCM surface and single, micrometer-sized particles. Nanotechnology. 2015;26(48):484001.  https://doi.org/10.1088/0957-4484/26/48/484001.Google Scholar
  129. 129.
    Furusawa H, Sekine T, Ozeki T. Hydration and viscoelastic properties of high- and low-density polymer brushes using a quartz crystal microbalance based on admittance analysis (QCM-A). Macromolecules. 2016;49(9):3463–70.  https://doi.org/10.1021/acs.macromol.6b00035.Google Scholar
  130. 130.
    Barnes C. Development of quartz crystal oscillators for under liquid sensing. Sensors Actuators A. 1991;29(1):59–69.Google Scholar
  131. 131.
    Mills CA, Chai KTC, Milgrew MJ, Glidle A, Cooper JM, Cumming DRS. A Multiplexed impedance analyzer for characterizing polymer-coated QCM sensor arrays. IEEE Sensors J. 2006;6(4):996–1002.Google Scholar
  132. 132.
    Wudy F, Multerer M, Stock C, Schmeer G, Gores HJ. Rapid impedance scanning QCM for electrochemical applications based on miniaturized hardware and high-performance curve fitting. Electrochim Acta. 2008;53(22):6568–74.Google Scholar
  133. 133.
    Rodahl M, Kasemo B. A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Rev Sci Instrum. 1996;67(9):3238–41.  https://doi.org/10.1063/1.1147494.Google Scholar
  134. 134.
    Edvardsson M, Rodahl M, Kasemo B, Hook F. A dual-frequency QCM-D setup operating at elevated oscillation amplitudes. Anal Chem. 2005;77(15):4918–26.Google Scholar
  135. 135.
    Baù M, Ferrari M, Ferrari V. Analysis and validation of contactless time-gated interrogation technique for quartz resonator sensors. Sensors (Basel). 2017;17(6):1264.Google Scholar
  136. 136.
    Beißner S, Thies J-W, Bechthold C, Kuhn P, Thürmann B, Dübel S, et al. Low-cost, in-liquid measuring system using a novel compact oscillation circuit and quartz-crystal microbalances (QCMs) as a versatile biosensor platform. J Sens Sens Syst. 2017;6(2):341–50.Google Scholar
  137. 137.
    Tumurbaatar B, Kim M-J, Park C-H, Kim CS. A portable and computer-simulation analysis for the real-time measurement of the QCMD systems for the biomedical application. Sens Biosens Res. 2018;21:75–81.Google Scholar
  138. 138.
    Baù M, Tonoli E, Ferrari V, Marioli D. Contactless electromagnetic switched interrogation of micromechanical cantilever resonators. Sensors Actuators A. 2011;172(1):195–203.Google Scholar
  139. 139.
    Ferrari V, Marioli D, Taroni A. Improving the accuracy and operating range of quartz microbalance sensors by a purposely designed oscillator circuit. IEEE Trans Instrum Meas. 2001;50(5):1119–22.Google Scholar
  140. 140.
    Arnau A, Sogorb T, Jiménez Y. Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation. Rev Sci Instrum. 2002;73(7):2724.  https://doi.org/10.1063/1.1484254.Google Scholar
  141. 141.
    Sell JK, Niedermayer AO, Jakoby B. Digital phase-locked loop circuit for driving resonant sensors. Procedia Eng. 2010;5:204–7.  https://doi.org/10.1016/j.proeng.2010.09.083.Google Scholar
  142. 142.
    Hu Z, Hedley J, Keegan N, Spoors J, Gallacher B, McNeil C. One port electronic detection strategies for improving sensitivity in piezoelectric resonant sensor measurements. Sensors. 2016;16(11):1781.Google Scholar
  143. 143.
    Montagut Y, García JV, Jiménez Y, March C, Montoya Á, Arnau A. Validation of a phase-mass characterization concept and interface for acoustic biosensors. Sensors. 2011;11(5):4702–20.Google Scholar
  144. 144.
    Arnau A, Montagut Y, García JV, Jiménez Y. A different point of view on the sensitivity of quartz crystal microbalance sensors. Meas Sci Technol. 2009;20(12):124004.Google Scholar
  145. 145.
    Yurish S. Low-cost, intelligent data acquisition system for QCM and other resonator-based bio- and chemical sensors. Int J Comput. 2008;7(2):9–17.Google Scholar
  146. 146.
    Yurish SY, Kirianaki NV, Pallas-Areny R. Universal frequency-to-digital converter for quasidigital and smart sensors: specifications and applications. Sens Rev. 2005;25(2):92–9.Google Scholar
  147. 147.
    Dunham GC, Benson NH, Petelenz D, Janata J. Dual quartz crystal microbalance. Anal Chem. 1995;67(2):267–72.  https://doi.org/10.1021/ac00098a005.Google Scholar
  148. 148.
    Ito T, Fujii Y, Yamanishi N, Asai N, Shimizu T. Electrodeposited ZnO thin film on twin sensor QCM for sensing of ethanol at room temperature. Procedia Eng. 2016;168:411–4.  https://doi.org/10.1016/j.proeng.2016.11.192.Google Scholar
  149. 149.
    Muckley ES, Anazagasty C, Jacobs CB, Hianik T, Ivanov IN. Low-cost scalable quartz crystal microbalance array for environmental sensing. Proc SPIE. 2016;9944:99440Y.Google Scholar
  150. 150.
    Klinkhachorn P, Huner B, Overton EB, Dharmasena HP, Gustowski DA. A Microprocessor based piezoelectric quartz microbalance system for compound-specific detection. IEEE Trans Instrum Meas. 1990;39(1):264–8.Google Scholar
  151. 151.
    Singh HK, Bezboruah T. Micro-controller based frequency to digital converter for interfacing frequency output sensors. In: 2015 international conference on electronic design, computer networks & automated verification (EDCAV): IEEE; 2015. p. 34–7.Google Scholar
  152. 152.
    Colodro F, Torralba A. Frequency-to-digital conversion based on a sampled phase-locked loop. Microelectron J. 2013;44(10):880–7.  https://doi.org/10.1016/j.mejo.2013.02.003.Google Scholar
  153. 153.
    International Frequency Sensor Association. Universal frequency-to-digital converter (UFDC1). Specification and application note. 2010; http://www.sensorsportal.com/DOWNLOADS/UFDC_1.pdf.Google Scholar
  154. 154.
    Yurish S. A Simple and universal resistive-bridge sensors interface. Sensors Transducers. 2011;10:45–59.Google Scholar
  155. 155.
    Beeley JM, Mills C, Hammond PA, Glidle A, Cooper JM, Wang L, et al. All-digital interface ASIC for a QCM-based electronic nose. Sensors Actuators B Chem. 2004;103(1–2):31–6.Google Scholar
  156. 156.
    Hyunsoo Kim JT, Lim J, Choi K, Kenny D. Direct mounting of quartz crystal on a CMOS PLL chip. In: Proceedings of the 2004 IEEE international frequency control symposium and exposition, 2004: IEEE; 2004. p. 165–8.Google Scholar
  157. 157.
    Karasek FW, Gibbins KR. A gas chromatograph based on the piezoelectric detector. J Chromatogr Sci. 1971;9(9):535–40.Google Scholar
  158. 158.
    Chen D, Sun X, Zhang K, Fan G, Wang Y, Li G, et al. A noncontact dibutyl phthalate sensor based on a wireless-electrodeless QCM-D modified with nano-structured nickel hydroxide. Sensors. 2017;17(7):1681.Google Scholar
  159. 159.
    Chen D, Zhang K, Zhou H, Fan G, Wang Y, Li G, et al. A wireless electrodeless quartz crystal microbalance with dissipation DMMP sensor. Sensors Actuators B Chem. 2018;261:408–17.  https://doi.org/10.1016/j.snb.2018.01.105.Google Scholar
  160. 160.
    Atkins P, de Paula J. Atkins’ physical chemistry. 10th ed. Oxford: Oxford University Press; 2014.Google Scholar
  161. 161.
    Haug M, Schierbaum KD, Gauglitz G, Göpel W. Chemical sensors based upon polysiloxanes: comparison between optical, quartz microbalance, calorimetric, and capacitance sensors. Sensors Actuators B Chem. 1993;11(1–3):383–91.Google Scholar
  162. 162.
    Shutler PME, Cheah HM. Applying Boltzmann’s definition of entropy. Eur J Phys. 1998;19(4):371–7.Google Scholar
  163. 163.
    Barton AFM. Solubility parameters. Chem Rev. 1975;75(6):731–53.  https://doi.org/10.1021/cr60298a003.Google Scholar
  164. 164.
    Huggins ML. Solutions of long chain compounds. J Chem Phys. 1941;9(5):440.  https://doi.org/10.1063/1.1750930.Google Scholar
  165. 165.
    Flory P. Thermodynamics of dilute solutions of high polymers. J Chem Phys. 1945;13(11):453–65.  https://doi.org/10.1063/1.1723978.Google Scholar
  166. 166.
    Flory PJ. The thermodynamics of polymer solutions. Princ Polym Chem. 1953:50–1.Google Scholar
  167. 167.
    Hierlemann A, Ricco AJ, Bodenhöfer K, Dominik A, Göpel W. Conferring selectivity to chemical sensors via polymer side-chain selection: thermodynamics of vapor sorption by a set of polysiloxanes on thickness-shear mode resonators. Anal Chem. 2000;72(16):3696–708.  https://doi.org/10.1021/ac991298i.Google Scholar
  168. 168.
    Hierlemann A, Lange D, Hagleitner C, Kerness N, Koll A, Brand O, et al. Application-specific sensor systems based on CMOS chemical microsensors. Sensors Actuators B Chem. 2000;70(1–3):2–11.Google Scholar
  169. 169.
    Grate JW, Snow A, Ballantine DS, Wohltjen H, Abraham MH, Mcgill RA, et al. Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas–liquid chromatographic partition coefficients. Anal Chem. 1988;60(9):869–75.  https://doi.org/10.1021/ac00160a010.Google Scholar
  170. 170.
    Bodenhöfer K, Hierlemann A, Noetzel G, Weimar U, Göpel W. Performances of mass-sensitive devices for gas sensing: thickness shear mode and surface acoustic wave transducers. Anal Chem. 1996;68(13):2210–8.  https://doi.org/10.1021/ac9600215.Google Scholar
  171. 171.
    Grate JW, Kaganove SN. Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors. Anal Chem. 1998;70(1):199–203.  https://doi.org/10.1021/ac970608z.Google Scholar
  172. 172.
    Fox TG. Influence of diluent and of copolymer composition on the glass transition temperature of a polymer system. Bull Am Phys Soc. 1956;1:123.Google Scholar
  173. 173.
    Pei J, Zhang JS. Determination of adsorption isotherm and diffusion coefficient of toluene on activated carbon at low concentrations. Build Environ. 2012;48:66–76.Google Scholar
  174. 174.
    El Sabahy J, Berthier J, Bonnet L, Matheron M, Bordy T, Yeromonahos C, et al. Tolueneorganic thin films partition coefficients analyzed with Langmuir adsorption theory and finite elements simulations. Sensors Actuators B Chem. 2014;202:941–8.  https://doi.org/10.1016/j.snb.2014.05.041.Google Scholar
  175. 175.
    Şen Z, Tarakci DK, Gürol I, Ahsen V, Harbeck M. Governing the sorption and sensing properties of titanium phthalocyanines by means of axial ligands. Sensors Actuators B Chem. 2016;229:581–6.Google Scholar
  176. 176.
    Fu Y, Finklea HO. Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers. Anal Chem. 2003;75(20):5387–93.  https://doi.org/10.1021/ac034523b.Google Scholar
  177. 177.
    Zhang K, Hu R, Fan G, Li G. Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors. Sensors Actuators B Chem. 2017;243:721–30.  https://doi.org/10.1016/j.snb.2016.12.063.Google Scholar
  178. 178.
    El Sabahy J, Berthier J, Ricoul F, Jousseaume V. Toward optimized SiOCH films for BTEX detection: impact of chemical composition on toluene adsorption. Sensors Actuators B Chem 2018;258:628–636. doi: https://doi.org/10.1016/j.snb.2017.11.105.
  179. 179.
    Doolittle AK. Studies in Newtonian flow. II. The dependence of the viscosity of liquids on freespace. J Appl Phys. 1951;22(12):1471–5.  https://doi.org/10.1063/1.1699894.Google Scholar
  180. 180.
    Fox TG, Flory PJ. Viscosity–molecular weight and viscosity–temperature relationships for polystyrene and polyisobutylene. J Am Chem Soc. 1948;70(7):2384–95.  https://doi.org/10.1021/ja01187a021.Google Scholar
  181. 181.
    Fox TG, Flory PJ. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys. 1950;21(6):581–91.  https://doi.org/10.1063/1.1699711.Google Scholar
  182. 182.
    Fox TG, Flory PJ. Further studies on the melt viscosity of polyisobutylene. J Phys Chem. 1951;55(2):221–34.  https://doi.org/10.1021/j150485a010.Google Scholar
  183. 183.
    Fox TG, Flory PJ. The glass temperature and related properties of polystyrene. Influence of molecular weight. J Polym Sci. 1954;14(75):315–9.  https://doi.org/10.1002/pol.1954.120147514.Google Scholar
  184. 184.
    Williams ML, Landel RF, Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc. 1955;77(14):3701–7.  https://doi.org/10.1021/ja01619a008.Google Scholar
  185. 185.
    Fujita H, Kishimoto A. Diffusion-controlled stress relaxation in polymers. II. Stress relaxation in swollen polymers. J Polym Sci. 1958;28(118):547–67.  https://doi.org/10.1002/pol.1958.1202811806.Google Scholar
  186. 186.
    Ferry JD, Stratton RA. The free volume interpretation of the dependence of viscosities and viscoelastic relaxation times on concentration, pressure, and tensile strain. Kolloid Z. 1960;171(2):107–11.  https://doi.org/10.1007/BF01520041.Google Scholar
  187. 187.
    Wang TT, Matsuoka S. The free volume concept and its implications on dilation in glassy polymers under shear stresses. J Polym Sci Polym Lett Ed. 1980;18(9):593–8.  https://doi.org/10.1002/pol.1980.130180902.Google Scholar
  188. 188.
    McKenna GB. Glass Formation and glassy behavior. In: Comprehensive polymer science and supplements: Elsevier; 1989. p. 311–62.Google Scholar
  189. 189.
    White RP, Lipson JEG. Polymer free volume and its connection to the glass transition. Macromolecules. 2016;49(11):3987–4007.  https://doi.org/10.1021/acs.macromol.6b00215.Google Scholar
  190. 190.
    Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43(2):219–56.  https://doi.org/10.1021/cr60135a002.Google Scholar
  191. 191.
    Gibbs JH, DiMarzio EA. Nature of the glass transition and the glassy state. J Chem Phys. 1958;28(3):373–83.  https://doi.org/10.1063/1.1744141.Google Scholar
  192. 192.
    DiMarzio EA, Gibbs JH. Chain stiffness and the lattice theory of polymer phases. J Chem Phys. 1958;28(5):807–13.  https://doi.org/10.1063/1.1744275.Google Scholar
  193. 193.
    Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43(1):139–46.  https://doi.org/10.1063/1.1696442.Google Scholar
  194. 194.
    Donth E-J. Relaxation and thermodynamics in polymers glass transition. Berlin: Akademie; 1992.Google Scholar
  195. 195.
    Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature. 2001;410:259.  https://doi.org/10.1038/35065704.Google Scholar
  196. 196.
    Stillinger FH, Debenedetti PG. Glass transition thermodynamics and kinetics. Annu Rev Condens Matter Phys. 2013;4(1):263–85.  https://doi.org/10.1146/annurev-conmatphys-030212-184329.Google Scholar
  197. 197.
    Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.Google Scholar
  198. 198.
    Biesalski M, Rühe J. Swelling of a polyelectrolyte brush in humid air. Langmuir. 2000;16(4):1943–50.  https://doi.org/10.1021/la990863+.Google Scholar
  199. 199.
    Altenberend U, Oprea A, Barsan N, Weimar U. Contribution of polymeric swelling to the overall response of capacitive gas sensors. Anal Bioanal Chem. 2013;405(20):6445–52.Google Scholar
  200. 200.
    Domack A, Prucker O, Rühe J, Johannsmann D. Swelling of a polymer brush probed with a quartz crystal resonator. Phys Rev E. 1997;56(1):680–9.  https://doi.org/10.1103/PhysRevE.56.680.Google Scholar
  201. 201.
    Martin SJ, Frye GC. Surface acoustic wave response to changes in viscoelastic film properties. Appl Phys Lett. 1990;57(18):1867–9.Google Scholar
  202. 202.
    Grate JW, Klusty M, McGill RA, Abraham MH, Whiting G, Andonian-Haftvan J. The predominant role of swelling-induced modulus changes of the sorbent phase in determining the responses of polymer-coated surface acoustic wave vapor sensors. Anal Chem. 1992;64(6):610–24.  https://doi.org/10.1021/ac00030a009.Google Scholar
  203. 203.
    Grate JW, Kaganove SN, Bhethanabotla VR. Examination of mass and modulus contributions to thickness shear mode and surface acoustic wave vapour sensor responses using partition coefficients. Faraday Discuss. 1997;107:259–83.Google Scholar
  204. 204.
    Johannsmann D, Mathauer K, Wegner G, Knoll W. Viscoelastic properties of thin films probed with a quartz-crystal resonator. Phys Rev B. 1992;46(12):7808–15.  https://doi.org/10.1103/PhysRevB.46.7808.Google Scholar
  205. 205.
    Lucklum R, Behling C, Cernosek RW, Martin SJ. Determination of complex shear modulus with thickness shear mode resonators. J Phys D Appl Phys. 1997;30(3):346–56.Google Scholar
  206. 206.
    Sahm M, Oprea A, Bârsan N, Weimar U. Interdependence of ammonia and water sorption in polyacrylic acid layers. Sensors Actuators B Chem. 2008;130(1):502–7.Google Scholar
  207. 207.
    Hoerter M, Oprea A, Bârsan N, Weimar U. Chemical interaction of gaseous ammonia and water vapour with polyacrylic acid layers. Sensors Actuators B Chem. 2008;134(2):743–9.Google Scholar
  208. 208.
    Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361–403.  https://doi.org/10.1021/ja02242a004.Google Scholar
  209. 209.
    Langmuir I. Nobel Lecture: surface chemistry. 1932. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1932/langmuirlecture.html. Accessed 29 Jul 2018.
  210. 210.
    Kabir KMM, Sabri YM, Myers L, Harrison I, Boom E, Coyle VE, et al. Investigating the crossinterference effects of alumina refinery process gas species on a SAW based mercury vapor sensor. Hydrometallurgy. 2017;170:51–7.  https://doi.org/10.1016/j.hydromet.2016.05.015.Google Scholar
  211. 211.
    Lv Y, Xu P, Yu H, Xu J, Li X. Ni-MOF-74 as sensing material for resonant-gravimetric detection of ppb-level CO. Sensors Actuators B Chem. 2018;262:562–9.Google Scholar
  212. 212.
    Darwish HMB, Okur S. CO adsorption kinetics of ferrocene-conjugated polypyrrole using quartz microbalance technique. Sensors Actuators B Chem. 2014;200:325–31.  https://doi.org/10.1016/j.snb.2014.03.107.Google Scholar
  213. 213.
    Wang L, Zhu Y, Xiang Q, Cheng Z, Chen Y, Xu J. One novel humidity-resistance formaldehyde molecular probe based hydrophobic diphenyl sulfone urea dry-gel: synthesis, sensing performance and mechanism. Sensors Actuators B Chem. 2017;251:590–600.  https://doi.org/10.1016/j.snb.2017.05.074.Google Scholar
  214. 214.
    Ogimoto Y, Selyanchyn R, Takahara N, Wakamatsu S, Lee S-W. Detection of ammonia in human breath using quartz crystal microbalance sensors with functionalized mesoporous SiO2 nanoparticle films. Sensors Actuators B Chem. 2015;215:428–36.Google Scholar
  215. 215.
    Wang X, Ding B, Yu J, Si Y, Yang S, Sun G. Electro-netting: fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing. Nanoscale. 2011;3(3):911–5.Google Scholar
  216. 216.
    Tokura Y, Nakada G, Moriyama Y, Oaki Y, Imai H, Shiratori S. Ultrasensitive detection of methylmercaptan gas using layered manganese oxide nanosheets with a quartz crystal microbalance sensor. Anal Chem. 2017;89(22):12123–30.  https://doi.org/10.1021/acs.analchem.7b02738.Google Scholar
  217. 217.
    Matsuguchi M, Harada N, Omori S. Poly(N-isopropylacrylamide) nanoparticles for QCM-based gas sensing of HCl. Sensors Actuators B Chem. 2014;190:446–50.Google Scholar
  218. 218.
    Matsuguchi M, Takaoka K, Kai H. HCl gas adsorption/desorption properties of poly(Nisopropylacrylamide) brushes grafted onto quartz resonator for gas-sensing applications. Sensors Actuators B Chem. 2015;208:106–11.Google Scholar
  219. 219.
    Jia Y, Yu H, Cai J, Li Z, Dong F. Explore on the quantitative analysis of specific surface area on sensitivity of polyacrylic acid-based QCM ammonia sensor. Sensors Actuators B Chem. 2017;243:1042–5.  https://doi.org/10.1016/j.snb.2016.12.090.Google Scholar
  220. 220.
    Zheng Q, Zhu Y, Xu J, Cheng Z, Li H, Li X. Fluoroalcohol and fluorinated-phenol derivatives functionalized mesoporous SBA-15 hybrids: high-performance gas sensing toward nerve agent. J Mater Chem. 2012;22(5):2263–70.Google Scholar
  221. 221.
    Li H, Zheng Q, Luo J, Cheng Z, Xu J. Impacts of meso-structure and organic loadings of fluoroalcohol derivatives/SBA-15 hybrids on nerve agent simulant sensing. Sensors Actuators B Chem. 2013;187:604–10.Google Scholar
  222. 222.
    Khanniche S, Mathieu D, Pereira F, Frenois C, Colin D, Barthet C, et al. Quantitative evaluation of the responses of a gravimetric gas sensor based on mesoporous functionalized silica: application to 2,4-DNT and TNT detection. Sensors Actuators B Chem. 2017;248:470.  https://doi.org/10.1016/j.snb.2017.03.137.Google Scholar
  223. 223.
    Tai H, Zhen Y, Liu C, Ye Z, Xie G, Du X, et al. Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film. Sensors Actuators B Chem. 2016;230:501–9.Google Scholar
  224. 224.
    Bayram A, Özbek C, Şenel M, Okur S. CO gas sorption properties of ferrocene branched chitosan derivatives. Sensors Actuators B Chem. 2017;241:308–13.Google Scholar
  225. 225.
    Zhang D, Wang D, Zong X, Dong G, Zhang Y. High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method. Sensors Actuators B Chem. 2018;262:531–41.Google Scholar
  226. 226.
    Hirai K, Sumida K, Meilikhov M, Louvain N, Nakahama M, Uehara H, et al. Impact of crystal orientation on the adsorption kinetics of a porous coordination polymer–quartz crystal microbalance hybrid sensor. J Mater Chem C. 2014;2(17):3336.Google Scholar
  227. 227.
    Barton AFM. Handbook of solubility parameters and other cohesion parameters. 2nd ed. Boca Raton: CRC Press; 1991.Google Scholar
  228. 228.
    Steiner T. The Hydrogen bond in the solid state. Angew Chem Int Ed. 2002;41(1):48–76.  https://doi.org/10.1002/1521-3773%2820020104%2941%3A1%3C48%3A%3AAIDANIE48%3E3.0.CO%3B2-U229.Google Scholar
  229. 229.
    Desiraju GR. The C-H O hydrogen bond: structural implications and supramolecular design. Acc Chem Res. 1996;29(9):441–9.  https://doi.org/10.1021/ar950135n.Google Scholar
  230. 230.
    Yan D, Xu P, Xiang Q, Mou H, Xu J, Wen W, et al. Polydopamine nanotubes: bio-inspired synthesis, formaldehyde sensing properties and thermodynamic investigation. J Mater Chem A. 2016;4(9):3487–93.Google Scholar
  231. 231.
    Xu X, Li C, Pei K, Zhao K, Zhao Z, Li H. Ionic liquids used as QCM coating materials for the detection of alcohols. Sensors Actuators B Chem. 2008;134(1):258–65.Google Scholar
  232. 232.
    Grate JW, Abraham MH. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sensors Actuators B Chem. 1991;3(2):85–111.Google Scholar
  233. 233.
    Hunter CA, Sanders JKM. The Nature of π-π Interactions. J Am Chem Soc. 1990;112(14):5525–34.  https://doi.org/10.1021/ja00170a016.Google Scholar
  234. 234.
    Bloom JWG, Wheeler SE. Taking the aromaticity out of aromatic interactions. Angew Chem Int Ed. 2011;50(34):7847–9.  https://doi.org/10.1002/anie.201102982.Google Scholar
  235. 235.
    Kumar A, Brunet J, Varenne C, Ndiaye A, Pauly A. Phthalocyanines based QCM sensors for aromatic hydrocarbons monitoring: role of metal atoms and substituents on response to toluene. Sensors Actuators B Chem. 2016;230:320–9.  https://doi.org/10.1016/j.snb.2016.02.032.Google Scholar
  236. 236.
    Li H-Y, Chu Y-H. Exploiting solvate ionic liquids for amine gas analysis on a quartz crystal microbalance. Anal Chem. 2017;89(10):5186–92.  https://doi.org/10.1021/acs.analchem.7b00857.Google Scholar
  237. 237.
    Barsan N, Weimar U. Conduction model of metal oxide gas sensors. J Electroceram. 2001;7(3):143–67.  https://doi.org/10.1023/A:1014405811371.Google Scholar
  238. 238.
    Buckingham AD, Fowler PW, Hutson JM. Theoretical studies of van der Waals molecules and intermolecular forces. Chem Rev. 1988;88(6):963–88.  https://doi.org/10.1021/cr00088a008.Google Scholar
  239. 239.
    Chalasinski G, Gutowski M. Weak interactions between small systems. Models for studying the nature of intermolecular forces and challenging problems for ab initio calculations. Chem Rev. 1988;88(6):943–62.  https://doi.org/10.1021/cr00088a007.Google Scholar
  240. 240.
    Koch U, Popelier PLA. Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem. 1995;99(24):9747–54.  https://doi.org/10.1021/j100024a016.Google Scholar
  241. 241.
    Hansen CM. The three dimensional solubility parameter and solvent diffusion coefficient. In: Their importance in surface coating formulation. Copenhagen: Danish Technical Press; 1967. https://www.hansen-solubility.com/contents/HSP1967-OCR.pdf.Google Scholar
  242. 242.
    Drago RS, Vogel GC, Needham TE. Four-parameter equation for predicting enthalpies of adduct formation. J Am Chem Soc. 1971;93(23):6014–26.  https://doi.org/10.1021/ja00752a010.Google Scholar
  243. 243.
    Kamlet MJ, Abboud JLM, Abraham MH, Taft RW. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J Organomet Chem. 1983;48(17):2877–87.  https://doi.org/10.1021/jo00165a018.Google Scholar
  244. 244.
    Markham A, Kobe KA. The solubility of gases in liquids. Chem Rev. 1941;28(3):519–88.  https://doi.org/10.1021/cr60091a003.Google Scholar
  245. 245.
    Hierlernann A, Zellers ET, Ricco AJ. Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors. Anal Chem. 2001;73(14):3458–66.  https://doi.org/10.1021/ac010083h.Google Scholar
  246. 246.
    Harbeck M, Şen Z, Gümüş G, Gürol I, Musluoǧlu E, Öztürk ZZ, et al. Customized vic-dioximes and their metal complexes for enhanced chemical sensing of polar organic molecules. Sensors Actuators B Chem. 2013;188:1004–11.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Physical and Theoretical ChemistryEberhard-Karls UniversityTübingenGermany

Personalised recommendations