Detection of multiclass explosives and related compounds in soil and water by liquid chromatography-dielectric barrier discharge ionization-mass spectrometry

  • Bienvenida Gilbert-LópezEmail author
  • Felipe J. Lara-Ortega
  • José Robles-Molina
  • Sebastian Brandt
  • Alexander Schütz
  • David Moreno-González
  • Juan F. García-Reyes
  • Antonio Molina-Díaz
  • Joachim FranzkeEmail author
Research Paper
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry


In this work, the multiclass detection of explosives and related compounds has been studied by liquid chromatography-high-resolution mass spectrometry by means of a time-of-flight mass spectrometer (TOFMS) operated in the negative ion mode, using dielectric barrier discharge ionization (DBDI). Reversed-phase high-performance liquid chromatography (HPLC) separation was performed using water–methanol mobile phase without any modifier, although the effect of ammonium acetate was studied. DBD plasma was generated by applying a square wave voltage of 2.5 kV to a 100-mL min−1 He flow. The DBDI probe was adjusted to fit the commercial API source housing so that the HPLC eluent was nebulized and vaporized in the same manner as for atmospheric-pressure chemical ionization (APCI). The ionization process was affected by the temperature of the two nitrogen streams used to vaporize the solvent and the analytes, particularly for RDX and HMX, which are thermolabile compounds. The best approach in terms of sensitivity for all the studied compounds was the use of a gradient of temperatures in the ionization source, starting at 225/200 °C (vaporizer/drying gas temp) for nitramines and ending at 350/325 °C for nitroaromatic compounds. High-resolution full-scan spectra of individual selected compounds were recorded by LC-DBDI-TOFMS, and the results were compared to LC-APCI-TOFMS. A better sensitivity (slope of calibration curve) was obtained by DBDI for more than 70% of the studied compounds in both wastewater and soil extracts.

Graphical abstract


Explosives Mass spectrometry Plasma Dielectric barrier discharge Ionization Liquid chromatography 


Funding information

This research received funding from the Spanish Ministerio de Economía y Competitividad (MINECO) through the project refs. CTQ-2012-34297 and CTQ-2015-71321-P and from Junta de Andalucía (project ref. FQM-2242). D.M.G. received a “Juan de la Cierva Formación” postdoctoral contract from the Spanish MINECO (ref. FJCI-2014–19573). B.G.L. received funding from University of Jaen (“Acción 6,” ref. R06/08/2018) and DAAD Re-invitation Programme for Former Scholarship Holders (ref. 91712817).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chatterjee S, Deb U, Datta S, Walther C, Gupta DK. Common explosives (TNT, RDX, HMX) and their fate in the environment: emphasizing bioremediation. Chemosphere. 2017;184:438–51.CrossRefGoogle Scholar
  2. 2.
    Yinon J. Toxicity and metabolism of explosives. Boca Raton: CRC Press; 1990.CrossRefGoogle Scholar
  3. 3.
    Lima DRS, Bezerra MLS, Neves EB, Moreira FR. Impact of ammunition and military explosives on human health and the environment. Rev Environ Health. 2011;26(2):101–10.CrossRefGoogle Scholar
  4. 4.
    Global Industry Analysts, (accessed 07.12.17).
  5. 5.
    Östmark H, Wallin S, Ang HG. Vapor pressure of explosives: a critical review. Propellants Explos Pyrotech. 2012;37:12–23.CrossRefGoogle Scholar
  6. 6.
    Brown KE, Greenfield MT, McGrane SD, Moore DS. Advances in explosives analysis—part I: animal, chemical, ion, and mechanical methods. Anal Bioanal Chem. 2016;408:35–47.CrossRefGoogle Scholar
  7. 7.
    Mäkinen M, Nousiainen M, Sillanpää M. Ion spectrometric detection technologies for ultra-traces of explosives: a review. Mass Spectrom Rev. 2011;30:940–73.Google Scholar
  8. 8.
    Cassada DA, Monson SJ, Snow DD, Spalding RF. Sensitive determination of RDX, nitroso-RDX metabolites, and other munitions in ground water by solid-phase extraction and isotope dilution liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A. 1999;844:87–95.CrossRefGoogle Scholar
  9. 9.
    Gilbert-López B, García-Reyes JF, Meyer C, Michels A, Franzke J, Molina-Díaz A, et al. Simultaneous testing of multiclass organic contaminants in food and environment by liquid chromatography/dielectric barrier discharge ionization mass spectrometry. Analyst. 2012;137:5403–10.CrossRefGoogle Scholar
  10. 10.
    Na N, Zhao M, Zhang S, Yang C, Zhang X. Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom. 2007;18:1859–62.CrossRefGoogle Scholar
  11. 11.
    Hayen H, Michels A, Franzke J. Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry. Anal Chem. 2009;81:10239–45.CrossRefGoogle Scholar
  12. 12.
    Albert A, Shelley JT, Engelhard C. Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis. Anal Bioanal Chem. 2014;406:6111–27.CrossRefGoogle Scholar
  13. 13.
    Gross JH. Direct analysis in real time - a critical review on DART-MS. Anal Bioanal Chem. 2014;406:63–80.CrossRefGoogle Scholar
  14. 14.
    Brandt S, Klute FD, Schütz A, Franzke J. Dielectric barrier discharges applied for soft ionization and their mechanism. Anal Chim Acta. 2017;951:16–31.CrossRefGoogle Scholar
  15. 15.
    Forbes TP, Sisco E. Recent advances in ambient mass spectrometry of trace explosives. Analyst. 2018;143:1948–69.CrossRefGoogle Scholar
  16. 16.
    Badjagbo K, Sauve S. Mass spectrometry for trace analysis of explosives in water. Crit Rev Anal Chem. 2012;42:257–71.CrossRefGoogle Scholar
  17. 17.
    Schramm S, Léonço D, Hubert C, Tabet JC, Bridoux M. Development and validation of an isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry method for the reliable quantification of 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) and 14 other explosives and their degradation products in environmental water samples. Talanta. 2015;143:271–8.CrossRefGoogle Scholar
  18. 18.
    Şener H, Anilanmert B, Cengiz S. A fast method for monitoring of organic explosives in soil: a gas temperature gradient approach in LC–APCI/MS/MS. Chem Pap. 2017;71:971–9.CrossRefGoogle Scholar
  19. 19.
    Rapp-Wright H, McEneff G, Murphy B, Gamble S, Morgan R, Beardah M, et al. Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. J Hazard Mater. 2017;329:11–21.CrossRefGoogle Scholar
  20. 20.
    EPA method 8330. Nitroaromatics and nitramines by high performance liquid chromatography (HPLC). 1994.Google Scholar
  21. 21.
    DeTata D, Collins P, McKinley A. An investigation into the fate of organic explosives in soil. Aust J Forensic Sci. 2013;45:71–84.CrossRefGoogle Scholar
  22. 22.
    Mu R, Shi H, Yuan Y, Karnjanapiboonwong A, Burken JG, Ma Y. Fast separation and quantification method for nitroguanidine and 2,4-dinitroanisole by ultrafast liquid chromatography−tandem mass spectrometry. Anal Chem. 2012;84:3427–32.CrossRefGoogle Scholar
  23. 23.
    Lara-Ortega FJ, Robles-Molina J, Brandt S, Schütz A, Gilbert-López B, Molina-Díaz A, et al. Use of dielectric barrier discharge ionization to minimize matrix effects and expand coverage in pesticide residue analysis by liquid chromatography-mass spectrometry. Anal Chim Acta. 2018;1020:76–85.CrossRefGoogle Scholar
  24. 24.
    Weston DJ. Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. Analyst. 2010;135:661–8.CrossRefGoogle Scholar
  25. 25.
    Hayen H, Jachmann N, Vogel M, Karst U. LC-electron capture-APCI(−)-MS determination of nitrobenzoxadiazole derivatives. Analyst. 2003;128:1365–72.CrossRefGoogle Scholar
  26. 26.
    Derpmann V, Mueller D, Bejan I, Sonderfeld H, Wilberscheid S, Koppmann R, et al. Capillary atmospheric pressure electron capture ionization (cAPECI): a highly efficient ionization method for nitroaromatic compounds. J Am Soc Mass Spectrom. 2014;25:329–42.CrossRefGoogle Scholar
  27. 27.
    Wu Z, Hendrickson CL, Rodgers RP, Marshall AG. Composition of explosives by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2002;74:1879–83.CrossRefGoogle Scholar
  28. 28.
    Schütz A, Brandt S, Liedtke S, Foest D, Marggraf U, Franzke J. Dielectric barrier discharge ionization of perfluorinated compounds. Anal Chem. 2015;87:11415–9.CrossRefGoogle Scholar
  29. 29.
    Thurman EM, Ferrer I. Adapting EPA Method 8330B for analysis of explosives in water to SPE and LC/MS/MS. Agilent application note 5991-0676EN. 2012.Google Scholar
  30. 30.
    Anilanmert B, Aydin M, Apak R, Avci GY, Cengiz S. A fast liquid chromatography tandem mass spectrometric analysis of PETN (pentaerythritol tetranitrate), RDX (3,5-trinitro-1,3,5-triazacyclohexane) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) in soil, utilizing a simple ultrasonic-assisted extraction with minimum solvent. Anal Sci. 2016;32:611–6.CrossRefGoogle Scholar
  31. 31.
    Gosetti F, Mazzucco E, Zampieri D, Gennaro MC. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2010;1217:3929–37.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bienvenida Gilbert-López
    • 1
    Email author
  • Felipe J. Lara-Ortega
    • 1
  • José Robles-Molina
    • 1
  • Sebastian Brandt
    • 2
  • Alexander Schütz
    • 2
  • David Moreno-González
    • 1
  • Juan F. García-Reyes
    • 1
  • Antonio Molina-Díaz
    • 1
  • Joachim Franzke
    • 2
    Email author
  1. 1.Analytical Chemistry Research Group, Department of Physical and Analytical ChemistryUniversity of JaénJaénSpain
  2. 2.Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V.DortmundGermany

Personalised recommendations