Advertisement

Recent trends in analysis of nanoparticles in biological matrices

  • Zuzana GajdosechovaEmail author
  • Zoltan Mester
Trends
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

The need to assess the human and environmental risks of nanoparticles (NPs) has prompted an adaptation of existing techniques and the development of new ones. Nanoparticle analysis poses a great challenge as the analytical information has to consider both physical (e.g. size and shape) and chemical (e.g. elemental composition) state of the analyte. Furthermore, one has to contemplate the transformation of NPs during the sample preparation and provide sufficient information about the new species derived from such alteration. Traditional techniques commonly used for NP analysis such as microscopy and light scattering are still frequently used for NPs in simple matrices; however, they have limitations in the analysis of complex environmental and biological samples. On the other hand, recent improvements in data acquisition frequencies and reduction of settling time of ICP-MS brought inorganic mass spectrometry into the forefront of NPs analysis. However, with the increasing demand of analytical information related to NPs, emerging techniques such as enhanced darkfield hyperspectral imaging, nano-SIMS and mass cytometry are in their way to fill the gaps. This trend review presents and discusses the state-of-the-art analytical techniques and sample preparation methods for NP analysis in biological matrices.

Graphical abstract

Keywords

Nanoparticle analysis Nano-SIMS Cy-TOF Biological tissue Single-particle ICP-MS 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hochella MF. Nanoscience and technology: the next revolution in the Earth sciences. Earth Planet Sci Lett. 2002;203(2):593–605.  https://doi.org/10.1016/s0012-821x(02)00818-x.Google Scholar
  2. 2.
    Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem Rev. 2015;115(16):8704–35.Google Scholar
  3. 3.
    Karshalev E, Esteban-Fernández de Ávila B, Wang J. Micromotors for “Chemistry-on-the-Fly”. J Am Chem Soc. 2018;140(11):3810–20.Google Scholar
  4. 4.
    Banfield JF, Zhang H. Nanoparticles in the environment. Rev Mineral Geochem. 2001;44(1):1–58.  https://doi.org/10.2138/rmg.2001.44.01.Google Scholar
  5. 5.
    Naasz S, Altenburger R, Kühnel D. Environmental mixtures of nanomaterials and chemicals: the Trojan-horse phenomenon and its relevance for ecotoxicity. Sci Total Environ. 2018;635:1170–81.  https://doi.org/10.1016/j.scitotenv.2018.04.180.Google Scholar
  6. 6.
    Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee on the Second Regulatory Review on Nanomaterials. 2012. https://ec.europa.eu/health//sites/health/files/nanotechnology/docs/swd_2012_288_en.pdf
  7. 7.
    Re-evaluation of titanium dioxide (E 171) as a food additive. EFSA J. 2016;14(9):e04545.  https://doi.org/10.2903/j.efsa.2016.4545.
  8. 8.
    Gordon SC, Butala JH, Carter JM, Elder A, Gordon T, Gray G, et al. Workshop report: strategies for setting occupational exposure limits for engineered nanomaterials. Regul Toxicol Pharmacol. 2014;68(3):305–11.Google Scholar
  9. 9.
    Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P, et al. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol. 2015;73(1):463–76.Google Scholar
  10. 10.
    Lapresta-Fernández A, Salinas-Castillo A, Anderson dela Llana S, Costa-Fernández JM, Domínguez-Meister S, Cecchini R, et al. A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State. 2014;39(6):423–58.  https://doi.org/10.1080/10408436.2014.899890.Google Scholar
  11. 11.
    Sadik OA, Du N, Kariuki V, Okello V, Bushlyar V. Current and emerging technologies for the characterization of nanomaterials. ACS Sustain Chem Eng. 2014;2(7):1707–16.  https://doi.org/10.1021/sc500175v.Google Scholar
  12. 12.
    Makama S, Peters R, Undas A, van den Brink NW. A novel method for the quantification, characterisation and speciation of silver nanoparticles in earthworms exposed in soil. Environ Chem. 2015;12(6):643.  https://doi.org/10.1071/en15006.Google Scholar
  13. 13.
    Jiménez-Lamana J, Abad-Álvaro I, Bierla K, Laborda F, Szpunar J, Lobinski R. Detection and characterization of biogenic selenium nanoparticles in selenium-rich yeast by single particle ICPMS. J Anal At Spectrom. 2018;33(3):452–60.  https://doi.org/10.1039/c7ja00378a.Google Scholar
  14. 14.
    Mortimer M, Gogos A, Bartolomé N, Kahru A, Bucheli TD, Slaveykova VI. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa. Environ Sci Technol. 2014;48(15):8760–7.  https://doi.org/10.1021/es500898j.Google Scholar
  15. 15.
    Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, et al. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol. 2010;100(2):140–50.  https://doi.org/10.1016/j.aquatox.2010.07.016.Google Scholar
  16. 16.
    Théoret T, Wilkinson KJ. Evaluation of enhanced darkfield microscopy and hyperspectral analysis to analyse the fate of silver nanoparticles in wastewaters. Anal Methods. 2017;9(26):3920–8.  https://doi.org/10.1039/c7ay00615b.Google Scholar
  17. 17.
    Vidmar J, Loeschner K, Correia M, Larsen EH, Manser P, Wichser A, et al. Translocation of silver nanoparticles in the ex vivo human placenta perfusion model characterized by single particle ICP-MS. Nanoscale. 2018;10(25):11980–91.  https://doi.org/10.1039/c8nr02096e.Google Scholar
  18. 18.
    Pena MDPS, Gottipati A, Tahiliani S, Neu-Baker NM, Frame MD, Friedman AJ, et al. Hyperspectral imaging of nanoparticles in biological samples: simultaneous visualization and elemental identification. Microsc Res Tech. 2016;79(5):349–58.Google Scholar
  19. 19.
    Brar SK, Verma M. Measurement of nanoparticles by light-scattering techniques. Trends Anal Chem. 2011;30(1):4–17.  https://doi.org/10.1016/j.trac.2010.08.008.Google Scholar
  20. 20.
    Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A. 2008;25(7):795–821.  https://doi.org/10.1080/02652030802007553.Google Scholar
  21. 21.
    Correia M, Loeschner K. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations. Anal Bioanal Chem. 2018;410(22):5603–15.  https://doi.org/10.1007/s00216-018-0919-8.Google Scholar
  22. 22.
    Deering CE, Tadjiki S, Assemi S, Miller JD, Yost GS, Veranth JM. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation. Part Fibre Toxicol. 2008;5(1):18.  https://doi.org/10.1186/1743-8977-5-18.Google Scholar
  23. 23.
    Degueldre C, Favarger PY. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf A Physicochem Eng Asp. 2003;217(1–3):137–42.  https://doi.org/10.1016/s0927-7757(02)00568-x.Google Scholar
  24. 24.
    Olesik JW, Gray PJ. Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle. J Anal At Spectrom. 2012;27(7):1143.  https://doi.org/10.1039/c2ja30073g.Google Scholar
  25. 25.
    Naasz S, Weigel S, Borovinskaya O, Serva A, Cascio C, Undas AK, et al. Multi-element analysis of single nanoparticles by ICP-MS using quadrupole and time-of-flight technologies. J Anal At Spectrom. 2018;33(5):835–45.  https://doi.org/10.1039/c7ja00399d.Google Scholar
  26. 26.
    Shigeta K, Koellensperger G, Rampler E, Traub H, Rottmann L, Panne U, et al. Sample introduction of single selenized yeast cells (Saccharomyces cerevisiae) by micro droplet generation into an ICP-sector field mass spectrometer for label-free detection of trace elements. J Anal At Spectrom. 2013;28(5):637.  https://doi.org/10.1039/c3ja30370e.Google Scholar
  27. 27.
    Walder AJ, Freedman PA. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. J Anal At Spectrom. 1992;7(3):571.  https://doi.org/10.1039/ja9920700571.Google Scholar
  28. 28.
    Yang L. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review. Mass Spectrom Rev. 2009;28(6):990–1011.  https://doi.org/10.1002/mas.20251.Google Scholar
  29. 29.
    Tanner M, Günther D. Short transient signals, a challenge for inductively coupled plasma mass spectrometry, a review. Anal Chim Acta. 2009;633(1):19–28.  https://doi.org/10.1016/j.aca.2008.11.041.Google Scholar
  30. 30.
    Borovinskaya O, Hattendorf B, Tanner M, Gschwind S, Günther D. A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J Anal At Spectrom. 2013;28(2):226–33.  https://doi.org/10.1039/c2ja30227f.Google Scholar
  31. 31.
    Guilhaus M, Selby D, Mlynski V. Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev. 2000;19(2):65–107.  https://doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e.Google Scholar
  32. 32.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009;81(16):6813–22.  https://doi.org/10.1021/ac901049w.Google Scholar
  33. 33.
    Schimpf ME, Caldwell K, Giddings JC. Field-flow fractionation handbook. 2000; John Wiley & SonsGoogle Scholar
  34. 34.
    Shard AG, Sparnacci K, Sikora A, Wright L, Bartczak D, Goenaga-Infante H, et al. Measuring the relative concentration of particle populations using differential centrifugal sedimentation. Anal Methods. 2018;10(22):2647–57.  https://doi.org/10.1039/c8ay00491a.Google Scholar
  35. 35.
    Hawkins A, Bednar AJ, Cizdziel J, Bu K, Steevens JA, Willett KL. Identification of silver nanoparticles in Pimephales promelas gastrointestinal tract and gill tissues using flow field flow fractionation ICP-MS. RSC Adv. 2014;4(78):41277–80.Google Scholar
  36. 36.
    Loeschner K, Navratilova J, Grombe R, Linsinger TPJ, Købler C, Mølhave K, et al. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection. Food Chem. 2015;181:78–84.  https://doi.org/10.1016/j.foodchem.2015.02.033.Google Scholar
  37. 37.
    Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, von der Kammer F, et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem. 2013;405(25):8185–95.  https://doi.org/10.1007/s00216-013-7228-z.Google Scholar
  38. 38.
    Heroult J, Nischwitz V, Bartczak D, Goenaga-Infante H. The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix. Anal Bioanal Chem. 2014;406(16):3919–27.  https://doi.org/10.1007/s00216-014-7831-7.Google Scholar
  39. 39.
    Bartczak D, Vincent P, Goenaga-Infante H. Determination of size- and number-based concentration of silica nanoparticles in a complex biological matrix by online techniques. Anal Chem. 2015;87(11):5482–5.  https://doi.org/10.1021/acs.analchem.5b01052.Google Scholar
  40. 40.
    Pitkänen L, Striegel AM. Size-exclusion chromatography of metal nanoparticles and quantum dots. Trends Anal Chem. 2016;80:311–20.  https://doi.org/10.1016/j.trac.2015.06.013.Google Scholar
  41. 41.
    Brewer AK, Striegel AM. Particle size characterization by quadruple-detector hydrodynamic chromatography. Anal Bioanal Chem. 2008;393(1):295–302.  https://doi.org/10.1007/s00216-008-2319-y.Google Scholar
  42. 42.
    Proulx K, Hadioui M, Wilkinson KJ. Separation, detection and characterization of nanomaterials in municipal wastewaters using hydrodynamic chromatography coupled to ICPMS and single particle ICPMS. Anal Bioanal Chem. 2016;408(19):5147–55.  https://doi.org/10.1007/s00216-016-9451-x.Google Scholar
  43. 43.
    Lombi E, Scheckel KG, Kempson IM. In situ analysis of metal(loid)s in plants: state of the art and artefacts. Environ Exp Bot. 2011;72(1):3–17.  https://doi.org/10.1016/j.envexpbot.2010.04.005.Google Scholar
  44. 44.
    Veith L, Dietrich D, Vennemann A, Breitenstein D, Engelhard C, Karst U, et al. Combination of micro X-ray fluorescence spectroscopy and time-of-flight secondary ion mass spectrometry imaging for the marker-free detection of CeO 2 nanoparticles in tissue sections. J Anal At Spectrom. 2018;33(3):491–501.Google Scholar
  45. 45.
    Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, De Nolf W, De La Torre-Roche R, Pagano L, et al. Bioaccumulation of CeO2 nanoparticles by earthworms in biochar-amended soil: a synchrotron microspectroscopy study. J Agric Food Chem. 2018;66(26):6609-6618.  https://doi.org/10.1021/acs.jafc.7b04612.
  46. 46.
    Da Silva GH, Clemente Z, Khan LU, Coa F, Neto LL, Carvalho HW, et al. Toxicity assessment of TiO2-MWCNT nanohybrid material with enhanced photocatalytic activity on Danio rerio (Zebrafish) embryos. Ecotoxicol Environ Saf. 2018;165:136–43.Google Scholar
  47. 47.
    Mahmoud NN, Harfouche M, Alkilany AM, Al-Bakri AG, El-Qirem RA, Shraim SA, et al. Synchrotron-based X-ray fluorescence study of gold nanorods and skin elements distribution into excised human skin layers. Colloids Surf B: Biointerfaces. 2018;165:118–26.Google Scholar
  48. 48.
    Andrews JC, Meirer F, Liu Y, Mester Z, Pianetta P. Transmission X-ray microscopy for full-field nano imaging of biomaterials. Microsc Res Tech. 2011;74(7):671–81.  https://doi.org/10.1002/jemt.20907.Google Scholar
  49. 49.
    Liu Y, Andrews J, Meirer F, Mehta A, Gil SC, Sciau P et al. editors. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL. In: AIP Conf Proc. AIP; 2011.Google Scholar
  50. 50.
    McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ. In situ imaging of metals in cells and tissues. Chem Rev. 2009;109(10):4780–827.  https://doi.org/10.1021/cr900223a.Google Scholar
  51. 51.
    ISO. International Organization for Standardization (ISO), ISO Guide 34. Geneva: General requirements for the competence of reference material producers; 2009.Google Scholar
  52. 52.
    Grombe R, Charoud-Got J, Emteborg H, Linsinger TPJ, Seghers J, Wagner S, et al. Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Anal Bioanal Chem. 2014.  https://doi.org/10.1007/s00216-013-7554-1.
  53. 53.
    Arslan Z, Ates M, McDuffy W, Agachan MS, Farah IO, Yu WW, et al. Probing metabolic stability of CdSe nanoparticles: alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe nanoparticles. J Hazard Mater. 2011.  https://doi.org/10.1016/j.jhazmat.2011.05.003.
  54. 54.
    Loeschner K, Brabrand MSJ, Sloth JJ, Larsen EH. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS. Anal Bioanal Chem. 2013;406(16):3845–51.  https://doi.org/10.1007/s00216-013-7431-y.Google Scholar
  55. 55.
    Jiménez-Lamana J, Laborda F, Bolea E, Abad-Álvaro I, Castillo JR, Bianga J, et al. An insight into silver nanoparticles bioavailability in rats. Metallomics. 2014;6(12):2242–9.  https://doi.org/10.1039/c4mt00200h.Google Scholar
  56. 56.
    Bolea E, Jiménez-Lamana J, Laborda F, Abad-Álvaro I, Bladé C, Arola L, et al. Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests. Analyst. 2014;139(5):914–22.  https://doi.org/10.1039/c3an01443f.Google Scholar
  57. 57.
    Klingberg H, Oddershede LB, Loeschner K, Larsen EH, Loft S, Møller P. Uptake of gold nanoparticles in primary human endothelial cells. Toxicol Res. 2015;4(3):655–66.  https://doi.org/10.1039/c4tx00061g.Google Scholar
  58. 58.
    Campbell P, Ma S, Schmalzried T, Amstutz HC. Tissue digestion for wear debris particle isolation. J Biomed Mater Res. 1994;28(4):523–6.  https://doi.org/10.1002/jbm.820280415.Google Scholar
  59. 59.
    Baxter RM, Steinbeck MJ, Tipper JL, Parvizi J, Marcolongo M, Kurtz SM. Comparison of periprosthetic tissue digestion methods for ultra-high molecular weight polyethylene wear debris extraction. J Biomed Mater Res B Appl Biomater. 2009;91B(1):409–18.  https://doi.org/10.1002/jbm.b.31416.Google Scholar
  60. 60.
    Vidmar J, Buerki-Thurnherr T, Loeschner K. Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS. J Anal At Spectrom. 2018;33(5):752–61.  https://doi.org/10.1039/c7ja00402h.Google Scholar
  61. 61.
    Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol. 2013;47(24):14315–23.  https://doi.org/10.1021/es403558c.Google Scholar
  62. 62.
    Gajdosechova Z, Lawan MM, Urgast DS, Raab A, Scheckel KG, Lombi E, et al. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci Rep. 2016;6:34361.  https://doi.org/10.1038/srep34361.Google Scholar
  63. 63.
    van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6(8):7427–42.  https://doi.org/10.1021/nn302649p.Google Scholar
  64. 64.
    Peters R, Herrera-Rivera Z, Undas A, van der Lee M, Marvin H, Bouwmeester H, et al. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J Anal At Spectrom. 2015;30(6):1274–85.  https://doi.org/10.1039/c4ja00357h.Google Scholar
  65. 65.
    Peters RJB, Rivera ZH, van Bemmel G, Marvin HJP, Weigel S, Bouwmeester H. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal Bioanal Chem. 2014.  https://doi.org/10.1007/s00216-013-7571-0.
  66. 66.
    Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth JJ, Bender Koch C, et al. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem. 2011;83(7):2461–8.  https://doi.org/10.1021/ac102545e.Google Scholar
  67. 67.
    Hadioui M, Peyrot C, Wilkinson KJ. Improvements to single particle ICPMS by the online coupling of ion exchange resins. Anal Chem. 2014;86(10):4668–74.  https://doi.org/10.1021/ac5004932.Google Scholar
  68. 68.
    Heringa MB, Peters RJB, Bleys RLAW, van der Lee MK, Tromp PC, van Kesteren PCE, et al. Detection of titanium particles in human liver and spleen and possible health implications. Part Fibre Toxicol. 2018;15(1).  https://doi.org/10.1186/s12989-018-0251-7.
  69. 69.
    Peters RJB, van Bemmel G, Herrera-Rivera Z, Helsper HPFG, Marvin HJP, Weigel S, et al. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem. 2014;62(27):6285–93.  https://doi.org/10.1021/jf5011885.Google Scholar
  70. 70.
    Modrzynska J, Berthing T, Ravn-Haren G, Kling K, Mortensen A, Rasmussen RR, et al. In vivo-induced size transformation of cerium oxide nanoparticles in both lung and liver does not affect long-term hepatic accumulation following pulmonary exposure. PLoS One. 2018;13(8):e0202477.  https://doi.org/10.1371/journal.pone.0202477.Google Scholar
  71. 71.
    Graham UM, Tseng MT, Jasinski JB, Yokel RA, Unrine JM, Davis BH, et al. In vivo processing of ceria nanoparticles inside liver: impact on free-radical scavenging activity and oxidative stress. Chem Aust. 2014;79(8):1083–8.  https://doi.org/10.1002/cplu.201402080.Google Scholar
  72. 72.
    Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–8.  https://doi.org/10.1038/nnano.2011.41.Google Scholar
  73. 73.
    Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano. 2011;5(6):4624–33.  https://doi.org/10.1021/nn200372g.Google Scholar
  74. 74.
    Campagnolo L, Massimiani M, Palmieri G, Bernardini R, Sacchetti C, Bergamaschi A, et al. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol. 2013;10(1):21.  https://doi.org/10.1186/1743-8977-10-21.Google Scholar
  75. 75.
    Hougaard KS, Campagnolo L, Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D, Valentino S, et al. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol. 2015;56:118–40.  https://doi.org/10.1016/j.reprotox.2015.05.015.Google Scholar
  76. 76.
    Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal Chem. 2012;84(22):9684–8.  https://doi.org/10.1021/ac302639c.Google Scholar
  77. 77.
    Koeman JH, van de Ven WSM, de Goeij JJM, Tjioe PS, van Haaften JL. Mercury and selenium in marine mammals and birds. Sci Total Environ. 1975;3(3):279–87.  https://doi.org/10.1016/0048-9697(75)90052-2.Google Scholar
  78. 78.
    Tuoriniemi J, Cornelis G, Hassellöv M. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal Chem. 2012;84(9):3965–72.  https://doi.org/10.1021/ac203005r.Google Scholar
  79. 79.
    Tuoriniemi J, Cornelis G, Hassellöv M. Improving the accuracy of single particle ICPMS for measurement of size distributions and number concentrations of nanoparticles by determining analyte partitioning during nebulisation. J Anal At Spectrom. 2014;29(4):743–52.  https://doi.org/10.1039/c3ja50367d.Google Scholar
  80. 80.
    Gschwind S, Aja Montes ML, Günther D. Comparison of sp-ICP-MS and MDG-ICP-MS for the determination of particle number concentration. Anal Bioanal Chem. 2015;407(14):4035–44.  https://doi.org/10.1007/s00216-015-8620-7.Google Scholar
  81. 81.
    Yin R, Feng X, Meng B. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan Mercury Mining District, SW China. Environ Sci Technol. 2013;47(5):2238–45.  https://doi.org/10.1021/es304302a.Google Scholar
  82. 82.
    Nuñez J, Renslow R, Cliff JB, Anderton CR. NanoSIMS for biological applications: current practices and analyses. Biointerphases. 2018;13(3):03B301.  https://doi.org/10.1116/1.4993628.Google Scholar
  83. 83.
    Georgantzopoulou A, Serchi T, Cambier S, Leclercq CC, Renaut J, Shao J, et al. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol. 2016;13(1).  https://doi.org/10.1186/s12989-016-0117-9.
  84. 84.
    Mehennaoui K, Georgantzopoulou A, Felten V, Andreï J, Garaud M, Cambier S, et al. Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles. Sci Total Environ. 2016;566-567:1649–59.  https://doi.org/10.1016/j.scitotenv.2016.06.068.Google Scholar
  85. 85.
    Henss A, Otto S-K, Schaepe K, Pauksch L, Lips KS, Rohnke M. High resolution imaging and 3D analysis of Ag nanoparticles in cells with ToF-SIMS and delayed extraction. Biointerphases. 2018;13(3):03B410.  https://doi.org/10.1116/1.5015957.Google Scholar
  86. 86.
    Lopes VR, Loitto V, Audinot J-N, Bayat N, Gutleb AC, Cristobal S. Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. J Nanobiotechnol. 2016;14(1).  https://doi.org/10.1186/s12951-016-0174-0.
  87. 87.
    Bettini S, Boutet-Robinet E, Cartier C, Coméra C, Gaultier E, Dupuy J, et al. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci Rep. 2017;7(1).  https://doi.org/10.1038/srep40373.
  88. 88.
    Yang Y-SS, Atukorale PU, Moynihan KD, Bekdemir A, Rakhra K, Tang L, et al. High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nat Commun. 2017;8:14069.  https://doi.org/10.1038/ncomms14069.Google Scholar
  89. 89.
    Ivask A, Mitchell AJ, Hope CM, Barry SC, Lombi E, Voelcker NH. Single cell level quantification of nanoparticle–cell interactions using mass cytometry. Anal Chem. 2017;89(16):8228–32.  https://doi.org/10.1021/acs.analchem.7b01006.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NRC MetrologyOttawaCanada

Personalised recommendations