Analytical and Bioanalytical Chemistry

, Volume 411, Issue 8, pp 1633–1645 | Cite as

Comparison of operator- and computer-controlled scanning electron microscopy of particles from different atmospheric aerosol types

  • Stine Eriksen HammerEmail author
  • Martin Ebert
  • Stephan Weinbruch
Research Paper


Individual aerosol particles from an urban background site in Mainz (Germany), a traffic hotspot site in Essen (Germany), the free troposphere in the Swiss Alps (high altitude research station Jungfraujoch), a rural background/marine site on Cyprus (Cyprus Atmospheric Observatory) and a rural background site in the forested area of Odenwald (Germany) were characterised with two different scanning electron microscopy techniques, operator controlled (opSEM) and computer controlled (ccSEM). For all samples, about 500 particles were investigated by opSEM, and between 1103 and 6940 particles by ccSEM. Large systematic differences (in some cases a factor up to ~ 20) in the abundance of the various particle groups are observed in the results of the two techniques. These differences are dependent on particle type and size. With ccSEM, information on the mixing state of particles (e.g., presence of heterogeneous inclusions, surface coatings or gradients in chemical composition) cannot be obtained, and particle groups which are recognised by their complex morphology (e.g., soot and fly ash particles) are classified into other particle groups. In addition, highly volatile particles (i.e., particles which evaporate under electron bombardment within seconds) will be overlooked by ccSEM. If these limitations of ccSEM are not considered, normalising the particle group abundances to 100% (a popular practise in many publications) may lead to drastic misinterpretation of the real aerosol composition. OpSEM is indispensable when detailed information of particle composition is required, although it suffers from a much higher expenditure of time. In conclusion, both techniques might be used for single particle characterisation as long as drawbacks of each are considered.


Scanning electron microscopy Atmospheric aerosol particles Operator-controlled SEM Computer-controlled SEM Particle characterisation 



Thanks to Nathalie Benker for collecting the rural background sample in Germany. We would like to thank the International Foundation High Altitude Research Stations Jungfraujoch & Gornergrat (HFSJG) who made it possible to carry out the experiment at Jungfraujoch, and Jean Sciare and the Cyprus Institute for the facility and help during the campaign in Cyprus. The authors gratefully acknowledge the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website (, last accessed: March 2018) used in this publication. This project is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 264907654; 264912134; 416816480 (KA 2280) and INUIT (FOR 1525 - EB383/3-1). The present work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654109. Thorough reviews by three anonymous referees helped to significantly improve the manuscript and are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_1614_MOESM1_ESM.pdf (2.8 mb)
ESM 1 (PDF 2.75 MB)


  1. 1.
    Seinfeld JH, Pandis SN. Atmospheric chemistry and physics: from air pollution to climate change. Hoboken: Wiley; 2012.Google Scholar
  2. 2.
    Kulkarni P, Baron PA, Willeke K. Aerosol measurement: principles, techniques, and applications, vol. 3. 3rd ed. Hoboken: Wiley; 2011.CrossRefGoogle Scholar
  3. 3.
    McMurry PH. A review of atmospheric aerosol measurements. Atmos Environ. 2000.
  4. 4.
    Li W, Shao L, Zhang D, Ro C-U, Hu M, Bi X, et al. A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions. J Clean Prod. 2016.
  5. 5.
    Bente M, Sklorz M, Streibel T, Zimmermann R. Online laser desorption-multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources. Anal Chem. 2008.
  6. 6.
    Roth A, Schneider J, Klimach T, Mertes S, van Pinxteren D, Herrmann H, et al. Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010. Atmos Chem Phys. 2016.
  7. 7.
    Laskin A, Cowin JP, Iedema MJ. Analysis of individual environmental particles using modern methods of electron microscopy and X-ray microanalysis. J Electron Spectrosc Relat Phenom. 2006.
  8. 8.
    Gunsch MJ, Kirpes RM, Kolesar KR, Barrett TE, China S, Sheesley RJ, et al. Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiaġvik, Alaska. Atmos Chem Phys. 2017.
  9. 9.
    Kirpes RM, Bondy AL, Bonanno D, Moffet RC, Wang B, Laskin A, et al. Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic. Atmos Chem Phys. 2018.
  10. 10.
    Eriksen Hammer S, Mertes S, Schneider J, Ebert M, Kandler K, Weinbruch S. Composition of ice particle residuals in mixed-phase clouds at Jungfraujoch (Switzerland): enrichment and depletion of particle groups relative to total aerosol. Atmos Chem Phys. 2018.
  11. 11.
    Xhoffer C, Wouters L, Artaxo P, Van Put A, Van Grieken R. Environmental particles environmental analytical and physical chemistry series. Chelsea: Lewis Publisher; 1992.Google Scholar
  12. 12.
    Craig RL, Bondy AL, Ault AP. Surface enhanced Raman spectroscopy enables observations of previously undetectable secondary organic aerosol components at the individual particle level. Anal Chem. 2015.
  13. 13.
    Paton-Walsh C, Smith TEL, Young EL, Griffith DWT, Guérette ÉA. New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – part 1: methods and Australian temperate forest fires. Atmos Chem Phys. 2014.
  14. 14.
    Craig N, Harker A, Novakov T. Determination of the chemical states of sulfur in ambient pollution aerosols by X-ray photoelectron spectroscopy. Atmos Environ. 1967;1974.
  15. 15.
    Zhu Y-J, Olson N, Beebe TP. Surface chemical characterization of 2.5-μm particulates (PM2.5) from air pollution in Salt Lake City using TOF-SIMS, XPS, and FTIR. Environ Sci Technol. 2001.
  16. 16.
    Berlinger B, Benker N, Weinbruch S, L’Vov B, Ebert M, Koch W, et al. Physicochemical characterisation of different welding aerosols. Anal Bioanal Chem. 2011.
  17. 17.
    Weinbruch S, Benker N, Kandler K, Schütze K, Kling K, Berlinger B, et al. Source identification of individual soot agglomerates in Arctic air by transmission electron microscopy. Atmos Environ. 2018.
  18. 18.
    Goldstein J, Newbury D, Joy D, Lyman C, Echlin P, Lifshin E, et al. Scanning electron microscopy and x-ray microanalysis. 3rd ed. New York: Plenum; 2003.CrossRefGoogle Scholar
  19. 19.
    Höflich B, Wentzel M, Ortner H, Weinbruch S, Skogstad A, Hetland S, et al. Chemical composition of individual aerosol particles from working areas in a nickel refinery. J Environ Monit. 2000.
  20. 20.
    Weinbruch S, Wentzel M, Kluckner M, Hoffmann P, Ortner HM. Characterization of individual atmospheric particles by element mapping in electron probe microanalysis. Microchim Acta. 1997.
  21. 21.
    Exner HE, Weinbruch S. Scanning Electron Microscopy. In: ASM handbook volume 9: metallography and microstructures. Novelty: ASM International; 2004.Google Scholar
  22. 22.
    Kandler K, Schneiders K, Ebert M, Hartmann M, Weinbruch S, Prass M, et al. Composition and mixing state of atmospheric aerosols determined by electron microscopy: method development and application to aged Saharan dust deposition in the Caribbean boundary layer. Atmos Chem Phys. 2018.
  23. 23.
    Willis RD, Blanchard FT, Conner TL. Guidelines for the application of SEM/EDX analytical techniques to particulate matter samples. Washington, US. EPA report. 2002.Google Scholar
  24. 24.
    Mamane Y, Willis R, Conner T. Evaluation of computer-controlled scanning electron microscopy applied to an ambient urban aerosol sample. Aerosol Sci Technol. 2001.
  25. 25.
    Vester BP, Ebert M, Barnert EB, Schneider J, Kandler K, Schütz L, et al. Composition and mixing state of the urban background aerosol in the Rhein-Main area (Germany). Atmos Environ. 2007.
  26. 26.
    Weinbruch S, Worringen A, Ebert M, Scheuvens D, Kandler K, Pfeffer U, et al. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy. Atmos Environ. 2014.
  27. 27.
    Weingartner E, Nyeki S, Baltensperger U. Seasonal and diurnal variation of aerosol size distributions (10<D<750 nm) at a high-alpine site (Jungfraujoch 3580 m asl). J Geophys Res Atmos (1984–2012). 1999.
  28. 28.
    Coen MC, Weingartner E, Nyeki S, Cozic J, Henning S, Verheggen B, et al. Long-term trend analysis of aerosol variables at the high-alpine site Jungfraujoch. J Geophys Res Atmos (1984–2012). 2007.
  29. 29.
    Cozic J, Verheggen B, Weingartner E, Crosier J, Bower K, Flynn M, et al. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmos Chem Phys. 2008.
  30. 30.
    Hinz K-P, Trimborn A, Weingartner E, Henning S, Baltensperger U, Spengler B. Aerosol single particle composition at the Jungfraujoch. J Aerosol Sci. 2005.
  31. 31.
    Kamphus M, Ettner-Mahl M, Klimach T, Drewnick F, Keller L, Cziczo DJ, et al. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmos Chem Phys. 2010.
  32. 32.
    Schmidt S, Schneider J, Klimach T, Mertes S, Schenk LP, Kupiszewski P, et al. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment. Atmos Chem Phys. 2017.
  33. 33.
    Achilleos S, Evans JS, Yiallouros PK, Kleanthous S, Schwartz J, Koutrakis P. PM10 concentration levels at an urban and background site in Cyprus: the impact of urban sources and dust storms. J Air Waste Manage Assoc. 2014.
  34. 34.
    Schrod J, Weber D, Drücke J, Keleshis C, Pikridas M, Ebert M, et al. Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems. Atmos Chem Phys. 2017.
  35. 35.
    Ebert M, Weigel R, Kandler K, Günther G, Molleker S, Grooß JU, et al. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds. Atmos Chem Phys. 2016.
  36. 36.
    Kandler K, Benker N, Bundke U, Cuevas E, Ebert M, Knippertz P, et al. Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy. Atmos Environ. 2007.
  37. 37.
    Choël M, Deboudt K, Osán J, Flament P, Van Grieken R. Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy−energy-dispersive x-ray spectrometry. Anal Chem. 2005.
  38. 38.
    Quesenberry CP, Hurst DC. Large sample simultaneous confidence intervals for multinomial proportions. Technometrics. 1964.
  39. 39.
    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag New York; 2009.CrossRefGoogle Scholar
  40. 40.
    Scheuvens D, Kandler K, Küpper M, Lieke K, Zorn RS, Ebert M, et al. Individual-particle analysis of airborne dust samples collected over Morocco in 2006 during SAMUM 1. Tellus Ser B Chem Phys Meteorol. 2011.
  41. 41.
    Worobiec A, de Hoog J, Osán J, Szalóki I, Ro C-U, Van Grieken R. Thermal stability of beam sensitive atmospheric aerosol particles in electron probe microanalysis at liquid nitrogen temperature. Spectrochim Acta B At Spectrosc. 2003.
  42. 42.
    Coz E, Gómez-Moreno FJ, Pujadas M, Casuccio GS, Lersch TL, Artíñano B. Individual particle characteristics of North African dust under different long-range transport scenarios. Atmos Environ. 2009.
  43. 43.
    Chen Y, Shah N, Huggins FE, Huffman GP, Linak WP, Miller CA. Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. Fuel Process Technol. 2004.
  44. 44.
    Yu D, Xu M, Zhang L, Yao H, Wang Q, Ninomiya Y. Computer-controlled scanning electron microscopy (CCSEM) investigation on the heterogeneous nature of mineral matter in six typical Chinese coals. Energy Fuel. 2007.
  45. 45.
    Sitzmann B, Kendall M, Watt J, Williams I. Characterisation of airborne particles in London by computer-controlled scanning electron microscopy. Sci Total Environ. 1999.
  46. 46.
    Sawvel EJ, Willis R, West RR, Casuccio GS, Norris G, Kumar HD, et al. Passive sampling to capture the spatial variability of coarse particles by composition in Cleveland, OH. Atmos Environ. 2015.
  47. 47.
    Mogo S, Cachorro VE, de Frutos AM. Morphological, chemical and optical absorbing characterization of aerosols in the urban atmosphere of Valladolid. Atmos Chem Phys. 2005.
  48. 48.
    Ebert M, Weinbruch S, Hoffmann P, Ortner HM. The chemical composition and complex refractive index of rural and urban influenced aerosols determined by individual particle analysis. Atmos Environ. 2004.
  49. 49.
    Worringen A, Kandler K, Benker N, Dirsch T, Mertes S, Schenk L, et al. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques. Atmos Chem Phys. 2015.
  50. 50.
    Targino AC, Krejci R, Noone KJ, Glantz P. Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment. Atmos Chem Phys. 2006.
  51. 51.
    Iwata A, Matsuki A. Characterization of individual ice residual particles by the single droplet freezing method: a case study in the Asian dust outflow region. Atmos Chem Phys. 2018.
  52. 52.
    Schütze K, Wilson JC, Weinbruch S, Benker N, Ebert M, Günther G, et al. Sub-micrometer refractory carbonaceous particles in the polar stratosphere. Atmos Chem Phys. 2017.
  53. 53.
    Sheridan PJ, Brock CA, Wilson JC. Aerosol particles in the upper troposphere and lower stratosphere: elemental composition and morphology of individual particles in northern midlatitudes. Geophys Res Lett. 1994.
  54. 54.
    Mackinnon IDR, McKay DS, Nace G, Isaacs AM. Classification of the Johnson Space Center stratospheric dust collection. J Geophys Res Solid Earth. 1982.
  55. 55.
    Kutchko BG, Kim AG. Fly ash characterization by SEM–EDS. Fuel. 2006.
  56. 56.
    Matthias-Maser S, Jaefnicke R. Examination of atmospheric bioaerosol particles with radii > 0.2 μm. J Aerosol Sci. 1994.
  57. 57.
    Coz E, Artíñano B, Clark LM, Hernandez M, Robinson AL, Casuccio GS, et al. Characterization of fine primary biogenic organic aerosol in an urban area in the northeastern United States. Atmos Environ. 2010.
  58. 58.
    Valsan AE, Priyamvada H, Ravikrishna R, Després VR, Biju CV, Sahu LK, et al. Morphological characteristics of bioaerosols from contrasting locations in southern tropical India – a case study. Atmos Environ. 2015.
  59. 59.
    Popovicheva O, Kireeva E, Persiantseva N, Timofeev M, Bladt H, Ivleva NP, et al. Microscopic characterization of individual particles from multicomponent ship exhaust. J Environ Monit. 2012.
  60. 60.
    Hamacher-Barth E, Leck C, Jansson K. Size-resolved morphological properties of the high Arctic summer aerosol during ASCOS-2008. Atmos Chem Phys. 2016.
  61. 61.
    Engelbrecht JP, McDonald EV, Gillies JA, Jayanty RKM, Casuccio G, Gertler AW. Characterizing mineral dusts and other aerosols from the Middle East—part 1: ambient sampling. Inhal Toxicol. 2009.
  62. 62.
    Zhang L, Sato A, Ninomiya Y. CCSEM analysis of ash from combustion of coal added with limestone. Fuel. 2002.
  63. 63.
    Andreae MO, Charlson RJ, Brynseels F, Storms H, Van Grieken R, Maenhaut W. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols. Science. 1986.
  64. 64.
    Kandler K, Schütz L, Jäckel S, Lieke K, Emmel C, Müller-Ebert D, et al. Ground-based off-line aerosol measurements at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: microphysical properties and mineralogy. Tellus Ser B Chem Phys Meteorol. 2011.
  65. 65.
    Suzuki K. Characterisation of airborne particulates and associated trace metals deposited on tree bark by ICP-OES, ICP-MS. SEM-EDX and laser ablation ICP-MS Atmos Environ. 2006.
  66. 66.
    Micheletti MI, Murruni LG, Debray ME, Rosenbusch M, Graf M, Ávila Cadena G, et al. Elemental analysis of aerosols collected at the Pierre Auger Cosmic Ray Observatory with PIXE technique complemented with SEM/EDX. Nucl Instrum Methods Phys Res B. 2012.
  67. 67.
    Grawe S, Augustin-Bauditz S, Clemen HC, Ebert M, Eriksen Hammer S, Lubitz J, et al. Coal fly ash: linking immersion freezing behavior and physicochemical particle properties. Atmos Chem Phys. 2018.
  68. 68.
    O'Brien RE, Wang B, Laskin A, Riemer N, West M, Zhang Q, et al. Chemical imaging of ambient aerosol particles: observational constraints on mixing state parameterization. J Geophys Res Atmos. 2015.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Stine Eriksen Hammer
    • 1
    Email author
  • Martin Ebert
    • 1
  • Stephan Weinbruch
    • 1
  1. 1.Institute for Applied GeosciencesTechnical University DarmstadtDarmstadtGermany

Personalised recommendations