Analytical and Bioanalytical Chemistry

, Volume 411, Issue 8, pp 1509–1516 | Cite as

Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma

  • Fereshteh ChekinEmail author
  • Vladyslav Myshin
  • Ran Ye
  • Sorin Melinte
  • Santosh K. Singh
  • Sreekumar Kurungot
  • Rabah Boukherroub
  • Sabine SzuneritsEmail author
Paper in Forefront


Doxorubicin (DOX), an anthracycline molecule, is currently one of the most widely used anticancer drugs in clinics. Systematic treatment of patients with DOX is known to be accompanied by several unpleasant side effects due to the toxicity of the drug. Thus, monitoring of DOX concentration in serum samples has become increasingly important to avoid side effects and ensure therapeutic efficiency. In this study, we discuss the construction of a disposable electrochemical sensor for the direct monitoring of DOX in clinical blood samples. The sensor is based on coating a gold electrode in a flexible integrated electrode construct formed on polyimide sheets using photolithography, with nitrogen-doped reduced graphene oxide (N-rGO) suspended in chitosan. Under optimized conditions, a linear relationship between the oxidative peak current and the concentration of DOX in the range of 0.010–15 μM with a detection limit of 10 nM could be achieved. The sensor was adapted to monitor DOX in serum samples of patients under anticancer treatment.

Graphical abstract


Nitrogen-doped reduced graphene oxide Disposable electrodes Doxorubicin Serum 


Funding information

Financial supports from the Centre National de la Recherche Scientifique (CNRS), the University of Lille, the Hauts-de-France region, the CPER “Photonics for Society”, and the joint support of Agence Nationale de la Recherche (ANR) and the Belgian F.R.S. - FNRS through FLAG-ERA JTC 2015-Graphtivity project are acknowledged.

Compliance with ethical standards

Human serum samples, obtained from venous blood collected from a peripheral vein, were kindly provided by the CHU Lille with consent of all individual participants, and approved by the Hospital’s Ethics Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_1611_MOESM1_ESM.pdf (29 kb)
ESM 1 (PDF 28 kb)


  1. 1.
    Berry G, Billingham M, Alderman E, Richardson P, Torti F, Lum B, et al. The use of cardiac biopsy to demonstrate reduced cardiotoxicity in AIDS Kaposi’s sarcoma patients treated with pegylated liposomal doxorubicin. Ann Oncol. 1998;9:711–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Charrois GJ, Allen TM. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochim Biophys Acta. 2004;166-177:167.CrossRefGoogle Scholar
  3. 3.
    Lotem M, Hubert A, Lyass O, Goldenhersh MA, Ingber A, Peretz T, et al. Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Arch Dermatol. 2000;136:1475–80.CrossRefPubMedGoogle Scholar
  4. 4.
    McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31:63–75.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pai V, Nahata M. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22:263–302.CrossRefPubMedGoogle Scholar
  6. 6.
    Shah M, Bourner L, Ali S, Al-Enazy S, Youssef MM, Fisler M, et al. HPLC method development for quantification of doxorubicin in cell culture and placental perfusion media. Separations. 2018;5:9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Arnold RD, Slack JE, Straubinger RM. Quantification of doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B. 2004;808:141–52.CrossRefGoogle Scholar
  8. 8.
    Motlagh NSH, Parvin P, Ghasemi F, Atyabi F. Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel and bleomycin. Biomed Opt Express. 2016;7:2400–6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chaney EN, Baldwin RP. Voltammetric determination of doxorubicin in urine by adsorption preconcentration and flow inject analysis. Anal Chim Acta. 1985;176:105–12.CrossRefGoogle Scholar
  10. 10.
    Hajian R, Tayebn Z, Shams N. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J Pharm Anal. 2017;7:27–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Hashemzadeh N, Hasanzadeh M, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. J Pharm Anal. 2016;6:235–41.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rezai B, Askarpour N, Ensafi AA. A novel sensitive doxorubicin impedimetrid immunosensor based on a specific monoclonal antibody gold nanoparticle sol-gel modified electrode. Talanta. 2014;119:164–9.CrossRefGoogle Scholar
  13. 13.
    Vajdle O, Zbiljić J, Tasić B, Jović D, Guzsvány V, Djordjevic A. Voltammetric behavior of doxorubicin at a renewable silver-amalgam film electrode and its determination in human urine. Electrochim Acta. 2014;132:49–57.CrossRefGoogle Scholar
  14. 14.
    He L, Sarka S, Barras A, Boukherroub R, Szunerits S, Mandler D. Electrochemically stimulated drug release from flexible electrodes coated electrophoretically with doxorubicin loaded reduced graphene oxide. Chem Commun. 2017;53:4022–5.CrossRefGoogle Scholar
  15. 15.
    Kaur M, Kaur M, Sharma VK. Nitrogen-doped graphene and graphene quantum dots: a review on synthesis and applications in energy, sensors and environment. Adv Colloid Interf Sci. 2018;259:44.CrossRefGoogle Scholar
  16. 16.
    Chekin F, Vasilescu A, Jijie R, Singh SK, Kurungot S, Iancu M, et al. Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode. Sensors Actuators B Chem. 2018;262:180–7.CrossRefGoogle Scholar
  17. 17.
    Vasilescu A, Ye R, Boulahneche S, Lamraoui S, Jijie R, Medjram MS, et al. Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 2: application to the analysis of calcitonin containing pharmaceutical formulation. Electrochim Acta. 2018;266:364–72.CrossRefGoogle Scholar
  18. 18.
    Singh SK, Dhavale VM, Boukherroub R, Kurungot S, Szunerits S. N-doped porous reduced graphene oxide as an efficient electrode material for high performance flexible solid-state supercapacitor. Appl Mater Today. 2017;8:141–9.CrossRefGoogle Scholar
  19. 19.
    Hung W-S, Chang S-M, Lecaros RLG, Ji Y-L, An Q-F, Hu C-C, et al. Fabrication of hydrothermally reduced graphene oxide/chitosan composite membranes with a lamellar structure on methanol dehydration. Carbon. 2017;117:112–9.CrossRefGoogle Scholar
  20. 20.
    Qi J, Yao P, He F, Yu C, Huang C. Nanoparticles with dextran/chitosan shell and BSA/chitosan core—doxorubicin loading and delivery. Int J Pharm. 2010;393:177–85.CrossRefGoogle Scholar
  21. 21.
    Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255–67.CrossRefPubMedGoogle Scholar
  22. 22.
    Soleymani J, Hasanzadeh M, Shadjou N, Khoubnasab M, Jalil J, Gharamaleki V, et al. A new kinetic mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater Sci Eng C. 2016;61:638–50.CrossRefGoogle Scholar
  23. 23.
    Peng A, Xu H, Luo C, Ding H. Application of a disposable doxorubicin sensor for direct determination of clinical drug concentration in patient blood. Int J Electrochem Sci. 2016;11:6266–78.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fereshteh Chekin
    • 1
    • 2
    Email author
  • Vladyslav Myshin
    • 2
  • Ran Ye
    • 3
  • Sorin Melinte
    • 3
  • Santosh K. Singh
    • 4
    • 5
  • Sreekumar Kurungot
    • 4
    • 5
  • Rabah Boukherroub
    • 2
  • Sabine Szunerits
    • 2
    Email author
  1. 1.Department of Chemistry, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
  2. 2.Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMNLilleFrance
  3. 3.Institute of Information and Communication Technologies, Electronics and Applied MathematicsUniversité catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Physical and Materials Chemistry DivisionCSIR-National Chemical LaboratoryPuneIndia
  5. 5.Academy of Scientific and Innovative ResearchNew DelhiIndia

Personalised recommendations