Analytical and Bioanalytical Chemistry

, Volume 411, Issue 9, pp 1745–1759 | Cite as

Metal–organic framework-based affinity materials in proteomics

  • Adeela Saeed
  • Dilshad Hussain
  • Shafaq Saleem
  • Sehrish Mehdi
  • Rabia Javeed
  • Fahmida Jabeen
  • Muhammad Najam-ul-HaqEmail author


Metal–organic frameworks (MOFs) are an eminent addition to materials science research because of their versatile properties due to which their applications are wide spread in proteomics. They are used in various fields due to their characteristics like higher surface area, specific symmetry, ease of modification, and availability of a variety of ligands. As affinity sorbents, they have shown higher selectivity, sensitivity, and reproducibility than conventionally used materials. They are applied for the enrichment of phosphopeptides, glycopeptides, low mass peptides, and as laser desorption/ionization (LDI) matrices for small-molecule analysis. This review captures the insight of applying MOFs in the field of mass spectrometry-based proteomics. The specific features are discussed regarding MOFs as affinity sorbents for the selective capture of biological molecules like phosphopeptides and glycopeptides from complex samples. The potential of MOFs as LDI mass spectrometry (LDI-MS) matrices for small-molecule analysis is also evaluated. MOFs have also been used as enzymatic reactors for the digestion of proteins, prior to MS analysis. MOF-based affinity materials and bioreactors reduce proteome complexity and improve detection sensitivity and coverage. Size-exclusion effects of MOFs help in subtracting the abundant proteins in peptidomics. Several limitations of MOFs are addressed, which include stability under varying pH conditions, the unclear interaction mechanism between the MOFs and targeted analytes, and the non-specific binding that interferes during the analysis because of metal centers and ligands in the MOFs. This will open up MOF-based research to overcome the limitations and improve the performance of MOFs as selective and sensitive materials.

Graphical abstract


Metal–organic frameworks Phosphopeptides Glycopeptides Affinity materials Enzymatic reactors LDI-MS 


Funding information

This work is supported by the Higher Education Commission (HEC) of Pakistan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Prieto DA, Johann DJ Jr, Wei B-R, Ye X, Chan KC, Nissley DV, et al. Mass spectrometry in cancer biomarker research: a case for immunodepletion of abundant blood-derived proteins from clinical tissue specimens. Biomark Med. 2014;8(2):269–86.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cho WC. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics. 2007;5(2):77–85.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ahmed N, Barker G, Oliva K, Garfin D, Talmadge K, Georgiou H, et al. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics. 2003;3(10):1980–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Camerini S, Mauri P. The role of protein and peptide separation before mass spectrometry analysis in clinical proteomics. J Chromatogr A. 2015;1381:1–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics. 2003;2(10):1096–103.CrossRefPubMedGoogle Scholar
  6. 6.
    Granger J, Siddiqui J, Copeland S, Remick D. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics. 2005;5(18):4713–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Pernemalm M, Lehtiö J. Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics. 2014;11(4):431–48.CrossRefPubMedGoogle Scholar
  8. 8.
    Najam-ul-Haq M, Jabeen F, Hussain D, Saeed A, Musharraf SG, Huck CW, et al. Versatile nanocomposites in phosphoproteomics: a review. Anal Chim Acta. 2012;747:7–18.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou H, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol. 2001;19(4):375–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Mirza MR, Rainer M, Messner CB, Güzel Y, Schemeth D, Stasyk T, et al. A new type of metal chelate affinity chromatography using trivalent lanthanide ions for phosphopeptide enrichment. Analyst. 2013;138(10):2995–3004.CrossRefPubMedGoogle Scholar
  11. 11.
    Ballif BA, Carey GR, Sunyaev SR, Gygi SP. Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res. 2007;7(01):311–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Batalha IL, Lowe CR, Roque AC. Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends Biotechnol. 2012;30(2):100–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Blackburn K, Goshe MB. Challenges and strategies for targeted phosphorylation site identification and quantification using mass spectrometry analysis. Brief Funct Genomic Proteomic. 2008;8(2):90–103.CrossRefPubMedGoogle Scholar
  14. 14.
    Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci. 2003;100(12):6940–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhu M, Diaz C, Chen S, Silva-Sanchez C. Comparison of different phosphopeptide enrichment strategies in phosphoprotein analysis. J Biomol Tech. 2012;23:S46–7.PubMedCentralGoogle Scholar
  16. 16.
    Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem. 2004;76(13):3590–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Boersema PJ, Mohammed S, Heck AJ. Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom. 2009;44(6):861–78.CrossRefPubMedGoogle Scholar
  18. 18.
    Heemskerk AA, Busnel J-M, Schoenmaker B, Derks RJ, Klychnikov O, Hensbergen PJ, et al. Ultra-low flow electrospray ionization-mass spectrometry for improved ionization efficiency in phosphoproteomics. Anal Chem. 2012;84(10):4552–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang Z-G, Lv N, Bi W-Z, Zhang J-L, Ni J-Z. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis. ACS Appl Mater Interfaces. 2015;7(16):8377–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Li X-S, Yuan B-F, Feng Y-Q. Recent advances in phosphopeptide enrichment: strategies and techniques. TrAC Trends Anal Chem. 2016;78:70–83.CrossRefGoogle Scholar
  21. 21.
    Potel CM, Lin M-H, Heck AJ, Lemeer S. Defeating major contaminants in Fe3+-immobilized metal ion affinity chromatography (IMAC) phosphopeptide enrichment. Mol Cell Proteomics. 2018;17(5):1028–34.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhu G-T, He X-M, Chen X, Hussain D, Ding J, Feng Y-Q. Magnetic graphitic carbon nitride anion exchanger for specific enrichment of phosphopeptides. J Chromatogr A. 2016;1437:137–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Posewitz MC, Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem. 1999;71(14):2883–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Leitner A. Phosphopeptide enrichment using metal oxide affinity chromatography. TrAC Trends Anal Chem. 2010;29(2):177–85.CrossRefGoogle Scholar
  25. 25.
    Feng S, Ye M, Zhou H, Jiang X, Jiang X, Zou H, et al. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics. 2007;6(9):1656–65.CrossRefPubMedGoogle Scholar
  26. 26.
    Tsai C-F, Wang Y-T, Chen Y-R, Lai C-Y, Lin P-Y, Pan K-T, et al. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res. 2008;7(9):4058–69.CrossRefPubMedGoogle Scholar
  27. 27.
    Arrington JV, Hsu C-C, Elder SG, Tao WA. Recent advances in phosphoproteomics and application to neurological diseases. Analyst. 2017;142(23):4373–87.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Riley NM, Coon JJ. Phosphoproteomics in the age of rapid and deep proteome profiling. Anal Chem. 2016;88(1):74–94.CrossRefPubMedGoogle Scholar
  29. 29.
    Yan Y, Zheng Z, Li Y, Deng C, Zhang X. Titanium(IV)-immobilized hydrophilic hierarchically ordered macro-/mesoporous silica for fast enrichment of phosphopeptides. ChemPlusChem. 2014;79(5):662–6.CrossRefGoogle Scholar
  30. 30.
    Hussain D, Najam-ul-Haq M, Jabeen F, Ashiq MN, Athar M, Rainer M, et al. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids. Anal Chim Acta. 2013;775:75–84.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhao M, Deng C, Zhang X. The design and synthesis of a hydrophilic core–shell–shell structured magnetic metal–organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research. Chem Commun. 2014;50(47):6228–31.CrossRefGoogle Scholar
  32. 32.
    Najam-ul-Haq M, Saeed A, Jabeen F, Hussain D, Khan N, Shabir M, et al. Development of new multifunctional terpolymer sorbent for proteomics applications. Biomed Chromatogr. 2015;29(7):981–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Wierzbicka C, Torsetnes SB, Jensen ON, Shinde S, Sellergren B. Hierarchically templated beads with tailored pore structure for phosphopeptide capture and phosphoproteomics. RSC Adv. 2017;7(28):17154–63.CrossRefGoogle Scholar
  34. 34.
    Wang H, Jiao F, Gao F, Lv Y, Wu Q, Zhao Y, et al. Titanium(IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides. Talanta. 2017;166:133–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Thingholm TE, Larsen MR. Phosphopeptide enrichment by immobilized metal affinity chromatography. Methods Mol Biol. 2016;1355:123–133.Google Scholar
  36. 36.
    Yan Y, Sun X, Deng C, Li Y, Zhang X. Metal oxide affinity chromatography platform–polydopamine coupled functional two-dimensional titania graphene nanohybrid for phosphoproteome research. Anal Chem. 2014;86(9):4327–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Leitner A. Enrichment strategies in phosphoproteomics. Methods Mol Biol. 2016;1355:105–121.Google Scholar
  38. 38.
    Zhou J, Liang Y, He X, Chen L, Zhang Y. Dual-functionalized magnetic metal–organic framework for highly specific enrichment of phosphopeptides. ACS Sustain Chem Eng. 2017;5(12):11413–21.CrossRefGoogle Scholar
  39. 39.
    Piovesana S, Capriotti AL, Cavaliere C, Ferraris F, Iglesias D, Marchesan S, et al. New magnetic graphitized carbon black TiO2 composite for phosphopeptide selective enrichment in shotgun phosphoproteomics. Anal Chem. 2016;88(24):12043–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Solari FA, Dell’Aica M, Sickmann A, Zahedi RP. Why phosphoproteomics is still a challenge. Mol BioSyst. 2015;11(6):1487–93.CrossRefPubMedGoogle Scholar
  41. 41.
    Najam-ul-Haq M, Jabeen F, Fatima B, Ashiq MN, Hussain D. Alumina nanocomposites: a comparative approach highlighting the improved characteristics of nanocomposites for phosphopeptides enrichment. Amino Acids. 2016;48(11):2571–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Yang C, Zhong X, Li L. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics. Electrophoresis. 2014;35(24):3418–29.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol Mech Dis. 2015;10:473–510.CrossRefGoogle Scholar
  44. 44.
    Mohyuddin A, Hussain D, Najam-ul-Haq M. Polydopamine assisted functionalization of boronic acid on magnetic nanoparticles for the selective extraction of ribosylated metabolites from urine. RSC Adv. 2017;7(16):9476–83.CrossRefGoogle Scholar
  45. 45.
    Miyanaga N, Akaza H, Ishikawa S, Ohlani M, Noguchi R, Kawai K, et al. Clinical evaluation of nuclear matrix protein 22 (NMP22) in urine as a novel marker for urothelial cancer. Eur Urol. 1997;31(2):163–168.Google Scholar
  46. 46.
    deVere WR, Soloway M, Sheinfeld J, Hudson M, Schellhammer P, Jarowenko M, et al. Results of a multicenter trial using the BTA test to monitor for and diagnose recurrent bladder cancer. J Urol. 1995;154(2):379–84.CrossRefGoogle Scholar
  47. 47.
    Dey P. Urinary markers of bladder carcinoma. Clin Chim Acta. 2004;340(1–2):57–65.CrossRefPubMedGoogle Scholar
  48. 48.
    Schmetter B, Habicht K, Lamm D, Morales A, Bander N, Grossman H, et al. A multicenter trial evaluation of the fibrin/fibrinogen degradation products test for detection and monitoring of bladder cancer. J Urol. 1997;158(3):801–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. New Eng J Med. 1991;324(17):1156–61.CrossRefPubMedGoogle Scholar
  50. 50.
    Choi YR, Kim H, Kang HJ, Kim N-G, Kim JJ, Park K-S, et al. Overexpression of high mobility group box 1 in gastrointestinal stromal tumors with KIT mutation. Cancer Res. 2003;63(9):2188–93.PubMedGoogle Scholar
  51. 51.
    Hartwell L, Mankoff D, Paulovich A, Ramsey S, Swisher E. Cancer biomarkers: a systems approach. Nat Biotechnol. 2006;24(8):905.CrossRefPubMedGoogle Scholar
  52. 52.
    Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009;11(3):R27.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Oncology ASoC. Clinical practice guidelines for the use of tumor markers in breast and colorectal cancer. Adopted on May 17, 1996 by the American Society of Clinical Oncology. J Clin Oncol. 1996;14:2843–77.CrossRefGoogle Scholar
  54. 54.
    Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol. 1999;17(5):1474–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Molina R, Auge JM, Farrus B, Zanón G, Pahisa J, Muñoz M, et al. Prospective evaluation of carcinoembryonic antigen (CEA) and carbohydrate antigen 15.3 (CA 15.3) in patients with primary locoregional breast cancer. Clin Chem. 2010;56(7):1148–57.CrossRefPubMedGoogle Scholar
  56. 56.
    Beveridge R. Review of clinical studies of CA 27.29 in breast cancer management. Int J Biol Markers. 1999;14(1):36–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A. Biomarkers predicting clinical outcome of epidermal growth factor receptor–targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst. 2009;101(19):1308–24.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nagorsen D, Keilholz U, Rivoltini L, Schmittel A, Letsch A, Asemissen AM, et al. Natural T-cell response against MHC class I epitopes of epithelial cell adhesion molecule, her-2/neu, and carcinoembryonic antigen in patients with colorectal cancer. Cancer Res. 2000;60(17):4850–4.PubMedGoogle Scholar
  59. 59.
    Hautkappe AL, Lu M, Mueller H, Bex A, Harstrick A, Roggendorf M, et al. Detection of germ-cell tumor cells in the peripheral blood by nested reverse transcription-polymerase chain reaction for α-fetoprotein-messenger RNA and β human chorionic gonadotropin-messenger RNA. Cancer Res. 2000;60(12):3170–4.PubMedGoogle Scholar
  60. 60.
    Stenman U-H, Alfthan H, Hotakainen K. Human chorionic gonadotropin in cancer. Clin Biochem. 2004;37(7):549–61.CrossRefPubMedGoogle Scholar
  61. 61.
    Nakae M, Iwamoto I, Fujino T, Maehata Y, Togami S, Yoshinaga M, et al. Preoperative plasma osteopontin level as a biomarker complementary to carbohydrate antigen 125 in predicting ovarian cancer. J Obstet Gynaecol Res. 2006;32(3):309–14.CrossRefPubMedGoogle Scholar
  62. 62.
    Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24(33):5313–27.CrossRefPubMedGoogle Scholar
  63. 63.
    Ito S, Hayama K, Hirabayashi J. Enrichment strategies for glycopeptides. Methods Mol Biol. 2009;534:195–203.Google Scholar
  64. 64.
    Payne RJ, Wong C-H. Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem Commun. 2010;46(1):21–43.CrossRefGoogle Scholar
  65. 65.
    Chen J, Shah P, Zhang H. Solid phase extraction of N-linked glycopeptides using hydrazide tip. Anal Chem. 2013;85(22):10670–4.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Madariaga D, Martínez-Sáez N, Somovilla VJ, Coelho H, Valero-González J, Castro-López J, et al. Detection of tumor-associated glycopeptides by lectins: the peptide context modulates carbohydrate recognition. ACS Chem Biol. 2014;10(3):747–56.CrossRefPubMedGoogle Scholar
  67. 67.
    Ma R, Hu J, Cai Z, Ju H. Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides. Nanoscale. 2014;6(6):3150–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Xu D, Yan G, Gao M, Deng C, Zhang X. Highly selective SiO 2–NH2@TiO2 hollow microspheres for simultaneous enrichment of phosphopeptides and glycopeptides. Anal Bioanal Chem. 2017;409(6):1607–14.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang L, Wu S, Li C, Yang Q. Facile synthesis of hybrid hollow mesoporous nanospheres with high content of interpenetrating polymers for size-selective peptides/proteins enrichment. Chem Commun. 2012;48(35):4190–2.CrossRefGoogle Scholar
  70. 70.
    Xu J, Zhang Z, He X-M, Wang R-Q, Hussain D, Feng Y-Q. Immobilization of zirconium-glycerolate nanowires on magnetic nanoparticles for extraction of urinary ribonucleosides. Microchim Acta. 2018;185(1):43.CrossRefGoogle Scholar
  71. 71.
    Li Y, Zhang X, Deng C. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chem Soc Rev. 2013;42(21):8517–39.CrossRefPubMedGoogle Scholar
  72. 72.
    Kitagawa S. Metal–organic frameworks (MOFs). Chem Soc Rev. 2014;43(16):5415–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Bae Y-S, Yazaydın AÖ, Snurr RQ. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores. Langmuir. 2010;26(8):5475–83.CrossRefPubMedGoogle Scholar
  74. 74.
    Zhang Z, Xu J, Hussain D, Feng Y-Q. Polyoxometalate incorporated porous polymer monoliths, a versatile separation media for nano liquid chromatography. J Chromatogr A. 2016;1453:71–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Silva P, Vilela SM, Tomé JP, Paz FAA. Multifunctional metal–organic frameworks: from academia to industrial applications. Chem Soc Rev. 2015;44(19):6774–803.CrossRefPubMedGoogle Scholar
  76. 76.
    Kumar P, Deep A, Kim K-H. Metal organic frameworks for sensing applications. TrAC Trends Anal Chem. 2015;73:39–53.CrossRefGoogle Scholar
  77. 77.
    Burtch NC, Jasuja H, Walton KS. Water stability and adsorption in metal–organic frameworks. Chem Rev. 2014;114(20):10575–612.CrossRefPubMedGoogle Scholar
  78. 78.
    Wang X, Makal TA, Zhou H-C. Protein immobilization in metal–organic frameworks by covalent binding. Austr J Chem. 2014;67(11):1629–31.CrossRefGoogle Scholar
  79. 79.
    Ma J, Yao Z, Hou L, Lu W, Yang Q, Li J, et al. Metal organic frameworks (MOFs) for magnetic solid-phase extraction of pyrazole/pyrrole pesticides in environmental water samples followed by HPLC-DAD determination. Talanta. 2016;161:686–92.CrossRefPubMedGoogle Scholar
  80. 80.
    Rowsell JL, Yaghi OM. Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 2004;73(1–2):3–14.CrossRefGoogle Scholar
  81. 81.
    Ma J, Wu G, Li S, Tan W, Wang X, Li J, et al. Magnetic solid-phase extraction of heterocyclic pesticides in environmental water samples using metal-organic frameworks coupled to high performance liquid chromatography determination. J Chromatogr A. 2018;1553:57–66.CrossRefPubMedGoogle Scholar
  82. 82.
    Wen Y, Chen L, Li J, Liu D, Chen L. Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. TrAC Trends Anal Chem. 2014;59:26–41.CrossRefGoogle Scholar
  83. 83.
    Wu G, Ma J, Li S, Guan J, Jiang B, Wang L, et al. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. J Colloid Interface Sci. 2018;15(528):360–71.CrossRefGoogle Scholar
  84. 84.
    Zhao M, Zhang X, Deng C. Facile synthesis of hydrophilic magnetic graphene@metal–organic framework for highly selective enrichment of phosphopeptides. RSC Adv. 2015;5(45):35361–4.CrossRefGoogle Scholar
  85. 85.
    Hunter T. Signaling—2000 and beyond. Cell. 2000;100(1):113–27.CrossRefPubMedGoogle Scholar
  86. 86.
    Porath J, Carlsson J, Olsson I, Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 1975;258:598–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Sickmann A. “State of the art” in phosphoproteomics: V146. Clin Chem Lab Med. 2006;44(9):A109.Google Scholar
  88. 88.
    Mann M, Ong S-E, Grønborg M, Steen H, Jensen ON, Pandey A. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 2002;20(6):261–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Seidler J, Zinn N, Haaf E, Boehm ME, Winter D, Schlosser A, et al. Metal ion-mobilizing additives for comprehensive detection of femtomole amounts of phosphopeptides by reversed phase LC-MS. Amino Acids. 2011;41(2):311–20.CrossRefPubMedGoogle Scholar
  90. 90.
    Hussain D, Musharraf SG, Najam-ul-Haq M. Development of diamond-lanthanide metal oxide affinity composites for the selective capture of endogenous serum phosphopeptides. Anal Bioanal Chem. 2016;408(6):1633–41.CrossRefPubMedGoogle Scholar
  91. 91.
    Wan H, Yan J, Yu L, Zhang X, Xue X, Li X, et al. Zirconia layer coated mesoporous silica microspheres used for highly specific phosphopeptide enrichment. Talanta. 2010;82(5):1701–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Pan C, Ye M, Liu Y, Feng S, Jiang X, Han G, et al. Enrichment of phosphopeptides by Fe3+-immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC–MS/MS analysis. J Proteome Res. 2006;5(11):3114–24.CrossRefPubMedGoogle Scholar
  93. 93.
    Qin H, Gao P, Wang F, Zhao L, Zhu J, Wang A, et al. Highly efficient extraction of serum peptides by ordered mesoporous carbon. Angew Chem Int Ed. 2011;50(51):12218–21.CrossRefGoogle Scholar
  94. 94.
    Gu Z-Y, Chen Y-J, Jiang J-Q, Yan X-P. Metal–organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples. Chem Commun. 2011;47(16):4787–9.CrossRefGoogle Scholar
  95. 95.
    Messner CB, Mirza MR, Rainer M, Lutz OMD, Guzel Y, Hofer TS, et al. Selective enrichment of phosphopeptides by a metal-organic framework. Anal Methods. 2013;5(9):2379–83.CrossRefGoogle Scholar
  96. 96.
    Wei J, Ren Y, Luo W, Sun Z, Cheng X, Li Y, et al. Ordered mesoporous alumina with ultra-large pores as an efficient absorbent for selective bioenrichment. Chem Mater. 2017;29(5):2211–7.CrossRefGoogle Scholar
  97. 97.
    Guo W, Wan J, Qian K, Yu C, Kong J, Yang P, et al. TiO2-functionalized mesoporous materials for sensitive analysis of multi-phosphopeptides. Sci China Chem. 2011;54(8):1327.CrossRefGoogle Scholar
  98. 98.
    Lamprou A, Wang H, Saeed A, Svec F, Britt D, Maya F. Preparation of highly porous coordination polymer coatings on macroporous polymer monoliths for enhanced enrichment of phosphopeptides. J Vis Exp. 2015;101:e52926.Google Scholar
  99. 99.
    Sturm M, Leitner A, Smått J-H, Lindén M, Lindner W. Tin dioxide microspheres as a promising material for Phosphopeptide enrichment prior to liquid chromatography-(tandem) mass spectrometry analysis. Adv Funct Mater. 2008;18(16):2381–9.CrossRefGoogle Scholar
  100. 100.
    Ma W-F, Zhang Y, Li L-L, You L-J, Zhang P, Zhang Y-T, et al. Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano. 2012;6(4):3179–88.CrossRefPubMedGoogle Scholar
  101. 101.
    Nelson CA, Szczech JR, Xu Q, Lawrence MJ, Jin S, Ge Y. Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem Commun. 2009;43:6607–9.CrossRefGoogle Scholar
  102. 102.
    Wang X-M, Guo Z-Y, Zhang Y, Chen M-L, Wang J-H. ZrO2 doped magnetic mesoporous polyimide for the efficient enrichment of phosphopeptides. Talanta. 2018;188:385–92.CrossRefPubMedGoogle Scholar
  103. 103.
    Su J, He X, Chen L, Zhang Y. Adenosine phosphate functionalized magnetic mesoporous graphene oxide nanocomposite for highly selective enrichment of phosphopeptides. ACS Sustain Chem Eng. 2018;6(2):2188–96.CrossRefGoogle Scholar
  104. 104.
    Han G, Ye M, Zou H. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst. 2008;133(9):1128–38.CrossRefPubMedGoogle Scholar
  105. 105.
    Xie Y, Deng C. Designed synthesis of a “one for two” hydrophilic magnetic amino-functionalized metal-organic framework for highly efficient enrichment of glycopeptides and phosphopeptides. Sci Rep. 2017;7(1):1162.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Chen L, Ou J, Wang H, Liu Z, Ye M, Zou H. Tailor-made stable Zr(IV)-based metal–organic frameworks for laser desorption/ionization mass spectrometry analysis of small molecules and simultaneous enrichment of phosphopeptides. ACS Appl Mater Interfaces. 2016;8(31):20292–300.CrossRefPubMedGoogle Scholar
  107. 107.
    Zhu X, Gu J, Yang J, Wang Z, Li Y, Zhao L, et al. Zr-based metal–organic frameworks for specific and size-selective enrichment of phosphopeptides with simultaneous exclusion of proteins. J Mater Chem B. 2015;3(20):4242–8.CrossRefGoogle Scholar
  108. 108.
    Chen Y, Xiong Z, Peng L, Gan Y, Zhao Y, Shen J, et al. Facile preparation of core–shell magnetic metal–organic framework nanoparticles for the selective capture of phosphopeptides. ACS Appl Mater Interfaces. 2015;7(30):16338–47.CrossRefPubMedGoogle Scholar
  109. 109.
    Han G, Zeng Q, Jiang Z, Deng W, Huang C, Li Y. Simple preparation of magnetic metal-organic frameworks composite as a “bait” for phosphoproteome research. Talanta. 2017;171:283–90.CrossRefPubMedGoogle Scholar
  110. 110.
    Saeed A, Maya F, Xiao DJ, Najam-ul-Haq M, Svec F, Britt DK. Growth of a highly porous coordination polymer on a macroporous polymer monolith support for enhanced immobilized metal ion affinity chromatographic enrichment of phosphopeptides. Adv Funct Mater. 2014;24(37):5790–7.CrossRefGoogle Scholar
  111. 111.
    Peng J, Zhang H, Li X, Liu S, Zhao X, Wu J, et al. Dual-metal centered zirconium–organic framework: a metal-affinity probe for highly specific interaction with phosphopeptides. ACS Appl Mater Interfaces. 2016;8(51):35012–20.CrossRefPubMedGoogle Scholar
  112. 112.
    Wang Y, Rui M, Lu G. Recent applications of metal–organic frameworks in sample pretreatment. J Sep Sci. 2018;41(1):180–94.CrossRefPubMedGoogle Scholar
  113. 113.
    Qi X, Chang C, Xu X, Zhang Y, Bai Y, Liu H. Magnetization of 3-dimentional homochiral metal-organic frameworks for efficient and highly selective capture of phosphopeptides. J Chromatogr A. 2016;1468:49–54.CrossRefPubMedGoogle Scholar
  114. 114.
    Xu X, Deng C, Gao M, Yu W, Yang P, Zhang X. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv Mater. 2006;18(24):3289–93.CrossRefGoogle Scholar
  115. 115.
    Xie Y, Deng C. Highly efficient enrichment of phosphopeptides by a magnetic lanthanide metal-organic framework. Talanta. 2016;159:1–6.CrossRefPubMedGoogle Scholar
  116. 116.
    Yang X, Xia Y. Urea-modified metal-organic framework of type MIL-101 (Cr) for the preconcentration of phosphorylated peptides. Microchim Acta. 2016;183(7):2235–40.Google Scholar
  117. 117.
    Li D, Yin D, Chen Y, Liu Z. Coupling of metal-organic frameworks-containing monolithic capillary-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for efficient analysis of protein phosphorylation. J Chromatogr A. 2016;1498:56–63.CrossRefPubMedGoogle Scholar
  118. 118.
    Liu Q, Sun N, Deng C-h. Recent advances in metal-organic frameworks for separation and enrichment in proteomics analysis. TrAC Trends Anal Chem. 2019;110:66–80.CrossRefGoogle Scholar
  119. 119.
    Liu Q, Deng C-h, Sun N. Hydrophilic tripeptide-functionalized magnetic metal–organic frameworks for the highly efficient enrichment of N-linked glycopeptides. Nanoscale. 2018;10(25):12149–55.CrossRefPubMedGoogle Scholar
  120. 120.
    Zhang Y-W, Li Z, Zhao Q, Zhou Y-L, Liu H-W, Zhang X-X. A facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides. Chem Commun. 2014;50(78):11504–6.CrossRefGoogle Scholar
  121. 121.
    Ma W, Xu L, Li Z, Sun Y, Bai Y, Liu H. Post-synthetic modification of an amino-functionalized metal-organic framework for highly efficient enrichment of N-linked glycopeptides. Nanoscale. 2016;8(21):10908–12.CrossRefPubMedGoogle Scholar
  122. 122.
    Ji Y, Xiong Z, Huang G, Liu J, Zhang Z, Liu Z, et al. Efficient enrichment of glycopeptides using metal-organic frameworks by hydrophilic interaction chromatography. Analyst. 2014;139(19):4987–93.CrossRefPubMedGoogle Scholar
  123. 123.
    Wang J, Li J, Wang Y, Gao M, Zhang X, Yang P. Development of versatile metal–organic framework functionalized magnetic graphene core–shell biocomposite for highly specific recognition of glycopeptides. ACS Appl Mater Interfaces. 2016;8(41):27482–9.CrossRefPubMedGoogle Scholar
  124. 124.
    Wang J, Li J, Gao M, Zhang X. Self-assembling covalent organic framework functionalized magnetic graphene hydrophilic biocomposites as an ultrasensitive matrix for N-linked glycopeptide recognition. Nanoscale. 2017;9(30):10750–6.CrossRefPubMedGoogle Scholar
  125. 125.
    He X-M, Ding J, Yu L, Hussain D, Feng Y-Q. Black phosphorus-assisted laser desorption ionization mass spectrometry for the determination of low-molecular-weight compounds in biofluids. Anal Bioanal Chem. 2016;408(22):6223–33.CrossRefPubMedGoogle Scholar
  126. 126.
    Wang S, Niu H, Zeng T, Zhang X, Cao D, Cai Y. Rapid determination of small molecule pollutants using metal-organic frameworks as adsorbent and matrix of MALDI-TOF-MS. Microporous Mesoporous Mater. 2017;239:390–5.CrossRefGoogle Scholar
  127. 127.
    Shih Y-H, Chien C-H, Singco B, Hsu C-L, Lin C-H, Huang H-Y. Metal-organic frameworks: new matrices for surface-assisted laser desorption-ionization mass spectrometry. Chem Commun. 2013;49(43):4929–31.CrossRefGoogle Scholar
  128. 128.
    Kim Y-K, Na H-K, Kwack S-J, Ryoo S-R, Lee Y, Hong S, et al. Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging. ACS Nano. 2011;5(6):4550–61.CrossRefPubMedGoogle Scholar
  129. 129.
    Tang H-W, Ng K-M, Lu W, Che C-M. Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: desorption mechanism(s) and the design of SALDI substrates. Anal Chem. 2009;81(12):4720–9.CrossRefPubMedGoogle Scholar
  130. 130.
    Fan L, Zhang X, Zhang W, Ding Y, Fan W, Sun L, et al. Syntheses, crystal structures and UV-visible absorption properties of five metal–organic frameworks constructed from terphenyl-2,5,2′,5′-tetracarboxylic acid and bis(imidazole) bridging ligands. Dalton Trans. 2014;43(18):6701–10.CrossRefPubMedGoogle Scholar
  131. 131.
    Fu C-P, Lirio S, Liu W-L, Lin C-H, Huang H-Y. A novel type of matrix for surface-assisted laser desorption–ionization mass spectrometric detection of biomolecules using metal-organic frameworks. Anal Chim Acta. 2015;888:103–9.CrossRefPubMedGoogle Scholar
  132. 132.
    Lin Z, Bian W, Zheng J, Cai Z. Magnetic metal-organic framework nanocomposites for enrichment and direct detection of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Chem Commun. 2015;51(42):8785–8.CrossRefGoogle Scholar
  133. 133.
    Han G, Zeng Q, Jiang Z, Xing T, Huang C, Li Y. MIL-101(Cr) as matrix for sensitive detection of quercetin by matrix-assisted laser desorption/ionization mass spectrometry. Talanta. 2017;164:355–61.CrossRefPubMedGoogle Scholar
  134. 134.
    Chen Y, Li D, Bie Z, He X, Liu Z. Coupling of phosphate-imprinted mesoporous silica nanoparticles-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for highly efficient analysis of protein phosphorylation. Anal Chem. 2016;88(2):1447–54.CrossRefPubMedGoogle Scholar
  135. 135.
    Yao J, Sun N, Deng C, Zhang X. Designed synthesis of graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides. Talanta. 2016;150:296–301.CrossRefPubMedGoogle Scholar
  136. 136.
    Zhao M, Deng C, Zhang X, Yang P. Facile synthesis of magnetic metal organic frameworks for the enrichment of low-abundance peptides for MALDI-TOF MS analysis. Proteomics. 2013;13(23–24):3387–92.CrossRefPubMedGoogle Scholar
  137. 137.
    Xiong Z, Ji Y, Fang C, Zhang Q, Zhang L, Ye M, et al. Facile preparation of core–shell magnetic metal–organic framework nanospheres for the selective enrichment of endogenous peptides. Chem Eur J. 2014;20(24):7389–95.CrossRefPubMedGoogle Scholar
  138. 138.
    Zhao M, Xie Y, Chen H, Deng C. Efficient extraction of low-abundance peptides from digested proteins and simultaneous exclusion of large-sized proteins with novel hydrophilic magnetic zeolitic imidazolate frameworks. Talanta. 2017;167:392–7.CrossRefPubMedGoogle Scholar
  139. 139.
    Wei JP, Wang H, Luo T, Zhou ZJ, Huang YF, Qiao B. Enrichment of serum biomarkers by magnetic metal-organic framework composites. Anal Bioanal Chem. 2017;409(7):1895–904.CrossRefPubMedGoogle Scholar
  140. 140.
    Hermanová S, Zarevúcká M, Bouša D, Pumera M, Sofer Z. Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale. 2015;7(13):5852–8.CrossRefPubMedGoogle Scholar
  141. 141.
    Zhao M, Chen T, Deng C. Porous anatase TiO2 derived from a titanium metal–organic framework as a multifunctional phospho-oriented nanoreactor integrating accelerated digestion of proteins and in situ enrichment. RSC Adv. 2016;6(57):51670–4.CrossRefGoogle Scholar
  142. 142.
    Deng Y, Deng C, Qi D, Liu C, Liu J, Zhang X, et al. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. Adv Mater. 2009;21(13):1377–82.CrossRefGoogle Scholar
  143. 143.
    Liu W-L, Lo S-H, Singco B, Yang C-C, Huang H-Y, Lin C-H. Novel trypsin–FITC@MOF bioreactor efficiently catalyzes protein digestion. J Mater Chem B. 2013;1(7):928–32.CrossRefGoogle Scholar
  144. 144.
    Shih YH, Lo SH, Yang NS, Singco B, Cheng YJ, Wu CY, et al. Trypsin-immobilized metal–organic framework as a biocatalyst in proteomics analysis. ChemPlusChem. 2012;77(11):982–6.CrossRefGoogle Scholar
  145. 145.
    Zhao M, Zhang X, Deng C. Rational synthesis of novel recyclable Fe3O4@MOF nanocomposites for enzymatic digestion. Chem Commun. 2015;51(38):8116–9.CrossRefGoogle Scholar
  146. 146.
    Wang H, Jiao F, Gao F, Zhao X, Zhao Y, Shen Y, et al. Covalent organic framework-coated magnetic graphene as a novel support for trypsin immobilization. Anal Bioanal Chem. 2017;409(8):2179–87.CrossRefPubMedGoogle Scholar
  147. 147.
    Zhai R, Yuan Y, Jiao F, Hao F, Fang X, Zhang Y, et al. Facile synthesis of magnetic metal organic frameworks for highly efficient proteolytic digestion used in mass spectrometry-based proteomics. Anal Chim Acta. 2017;994:19–28.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Adeela Saeed
    • 1
    • 2
  • Dilshad Hussain
    • 2
    • 3
  • Shafaq Saleem
    • 1
  • Sehrish Mehdi
    • 1
  • Rabia Javeed
    • 2
  • Fahmida Jabeen
    • 1
    • 2
  • Muhammad Najam-ul-Haq
    • 2
    Email author
  1. 1.Department of ChemistryThe Women University, Kutchery CampusMultanPakistan
  2. 2.Institute of Chemical SciencesBahauddin Zakariya UniversityMultanPakistan
  3. 3.HEJ Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan

Personalised recommendations