Advertisement

Label-free detection of exosomes using a surface plasmon resonance biosensor

  • Abu Ali Ibn Sina
  • Ramanathan Vaidyanathan
  • Alain Wuethrich
  • Laura G. CarrascosaEmail author
  • Matt TrauEmail author
Paper in Forefront
  • 93 Downloads

Abstract

The development of a sensitive and specific detection platform for exosomes is highly desirable as they are believed to transmit vital tumour-specific information (mRNAs, microRNAs, and proteins) to remote cells for secondary metastasis. Herein, we report a simple method for the real-time and label-free detection of clinically relevant exosomes using a surface plasmon resonance (SPR) biosensor. Our method shows high specificity in detecting BT474 breast cancer cell–derived exosomes particularly from complex biological samples (e.g. exosome spiked in serum). This approach exhibits high sensitivity by detecting as low as 8280 exosomes/μL which may potentially be suitable for clinical analysis. We believe that this label-free and real-time method along with the high specificity and sensitivity may potentially be useful for clinical settings.

Keywords

Exosome Surface plasmon resonance Biosensor Cancer biomarker Cancer diagnosis 

Notes

Acknowledgements

We acknowledge the support from the Australian National Fabrication Facility (ANFF) for SPR chip fabrication, and Center for Microscopy and Microanalysis (CMM) for cryo-TEM facility.

Funding information

This study received funding from the Australian Research Council (DP180102868). AW received funding from the University of Queensland for the Development Fellowship (UQFEL1831057).

Compliance with ethical standards

The authors declare that they have no conflict of interest

Supplementary material

216_2019_1608_MOESM1_ESM.pdf (480 kb)
ESM 1 (PDF 480 kb)

References

  1. 1.
    Grasso L, Wyss R, Weidenauer L, Thampi A, Demurtas D, Prudent M, et al. Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal Bioanal Chem. 2015;407:5425–32.  https://doi.org/10.1007/s00216-015-8711-5.CrossRefGoogle Scholar
  2. 2.
    Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12:1659–68.  https://doi.org/10.1111/j.1600-0854.2011.01225.x.CrossRefGoogle Scholar
  3. 3.
    van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64:676–705.  https://doi.org/10.1124/pr.112.005983.CrossRefGoogle Scholar
  4. 4.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.CrossRefGoogle Scholar
  5. 5.
    Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9:581–93.  https://doi.org/10.1038/nri2567.CrossRefGoogle Scholar
  6. 6.
    Principe S, Hui AB-Y, Bruce J, Sinha A, Liu F-F, Kislinger T. Tumor-derived exosomes and microvesicles in head and neck cancer: implications for tumor biology and biomarker discovery. Proteomics. 2013;13:1608–23.  https://doi.org/10.1002/pmic.201200533.CrossRefGoogle Scholar
  7. 7.
    Fais S, O’Driscoll L, Borras FE, Buzas E, Camussi G, Cappello F, et al. Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano. 2016;10:3886–99.  https://doi.org/10.1021/acsnano.5b08015.CrossRefGoogle Scholar
  8. 8.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.CrossRefGoogle Scholar
  9. 9.
    Brinton LT, Sloane HS, Kester M, Kelly KA. Formation and role of exosomes in cancer. Cell Mol Life Sci. 2015;72:659–71.  https://doi.org/10.1007/s00018-014-1764-3.CrossRefGoogle Scholar
  10. 10.
    Lane RE, Korbie D, Hill MM, Trau M. Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clin Transl Med. 2018;7:14.  https://doi.org/10.1186/s40169-018-0192-7.CrossRefGoogle Scholar
  11. 11.
    Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30:1–29.  https://doi.org/10.1002/0471143030.cb0322s30.
  12. 12.
    Wubbolts R, Leckie RS, Veenhuizen PTM, Schwarzmann G, Möbius W, Hoernschemeyer J, et al. Proteomic and biochemical analyses of human B cell-derived exosomes: potential implications for their function and multivesicular body formation. J Biol Chem. 2003;278:10963–72.  https://doi.org/10.1074/jbc.M207550200.CrossRefGoogle Scholar
  13. 13.
    Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods. 2002;270:211–26.CrossRefGoogle Scholar
  14. 14.
    Zhou H, Yuen PST, Pisitkun T, Gonzales PA, Yasuda H, Dear JW, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006;69:1471–6.  https://doi.org/10.1016/j.polymdegradstab.2005.10.005.CrossRefGoogle Scholar
  15. 15.
    Ding M, Wang C, Lu X, Zhang C, Zhou Z, Chen X, et al. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal Bioanal Chem. 2018;410:3805–14.  https://doi.org/10.1007/s00216-018-1052-4.CrossRefGoogle Scholar
  16. 16.
    Vaidyanathan R, Naghibosadat M, Rauf S, Korbie D, Carrascosa LG, Shiddiky MJA, et al. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal Chem. 2014;86:11125–32.CrossRefGoogle Scholar
  17. 17.
    Henderson RD, Guijt RM, Andrewartha L, Lewis TW, Rodemann T, Henderson A, et al. Lab-on-a-Chip device with laser-patterned polymer electrodes for high voltage application and contactless conductivity detection. Chem Commun. 2012;48:9287–9.  https://doi.org/10.1039/c2cc33693f.CrossRefGoogle Scholar
  18. 18.
    Wang Z, Wu H, Fine D, Schmulen J, Hu Y, Godin B, et al. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip. 2013;13:2879–82.  https://doi.org/10.1039/c3lc41343h.CrossRefGoogle Scholar
  19. 19.
    Moschou D, Greathead L, Pantelidis P, Kelleher P, Morgan H, Prodromakis T. Amperometric IFN-γ immunosensors with commercially fabricated PCB sensing electrodes. Biosens Bioelectron. 2016;86:805–10.  https://doi.org/10.1016/j.bios.2016.07.075.CrossRefGoogle Scholar
  20. 20.
    Pechlivanidis NG, Papadimitriou KI, Evans D, Vasilakis N, Prodromakis T. Towards a smartphone-aided electronic ELISA for real-time electrochemical monitoring. In: 2017 IEEE Int. Symp. Circuits Syst. 2017: pp. 1–4.  https://doi.org/10.1109/ISCAS.2017.8050616.
  21. 21.
    Evans D, Papadimitriou KI, Greathead L, Vasilakis N, Pantelidis P, Kelleher P, et al. An assay system for point-of-care diagnosis of tuberculosis using commercially manufactured PCB technology. Sci Rep. 2017;7:1–10.  https://doi.org/10.1038/s41598-017-00783-8.CrossRefGoogle Scholar
  22. 22.
    Wuethrich A, Howard CB, Trau M. Geometric optimisation of electrohydrodynamic fluid flows for enhanced biosensing. Microchem J. 2018;137:231–7.  https://doi.org/10.1016/j.microc.2017.10.012.CrossRefGoogle Scholar
  23. 23.
    Wuethrich A, Sina AAI, Ahmed M, Lina T-Y, Carrascosa LG, Trau M. Interfacial nano-mixing in a miniaturised platform enables signal enhancement and in situ detection of cancer biomarkers. Nanoscale. 2018;10:10884–90.  https://doi.org/10.1039/c7nr09496e.CrossRefGoogle Scholar
  24. 24.
    Im H, Shao H, Il PY, Peterson VM, Castro CM, Weissleder R, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32:490–5.  https://doi.org/10.1038/nbt.2886.CrossRefGoogle Scholar
  25. 25.
    Zhu L, Wang K, Cui J, Liu H, Bu X, Ma H, et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014;86:8857–64.  https://doi.org/10.1021/ac5023056.CrossRefGoogle Scholar
  26. 26.
    Di Noto G, Bugatti A, Zendrini A, Mazzoldi EL, Montanelli A, Caimi L, et al. Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes. Biosens Bioelectron. 2016;77:518–24.  https://doi.org/10.1016/j.bios.2015.09.061.CrossRefGoogle Scholar
  27. 27.
    Chen J, Park B. Label-free screening of foodborne Salmonella using surface plasmon resonance imaging. Anal Bioanal Chem. 2018;410:5455–64.  https://doi.org/10.1007/s00216-017-0810-z.CrossRefGoogle Scholar
  28. 28.
    Tai Y-H, Fu P-H, Lee K-L, Wei P-K. Spectral imaging analysis for ultrasensitive biomolecular detection using gold-capped nanowire arrays. Sensors. 2018;18:2181.  https://doi.org/10.3390/s18072181.CrossRefGoogle Scholar
  29. 29.
    Bustos RH, Zapata C, Esteban E, García JC, Jáuregui E, Jaimes D. Label-free quantification of anti-TNF-α in patients treated with adalimumab using an optical biosensor. Sensors. 2018;18:691.  https://doi.org/10.3390/s18030691.
  30. 30.
    Liu C, Zeng X, An Z, Yang Y, Eisenbaum M, Gu X, et al. Sensitive detection of exosomal proteins via a compact surface plasmon resonance biosensor for cancer diagnosis. ACS Sensors. 2018;3:1471–9.  https://doi.org/10.1021/acssensors.8b00230.CrossRefGoogle Scholar
  31. 31.
    Picciolini S, Gualerzi A, Vanna R, Sguassero A, Gramatica F, Bedoni M, et al. Detection and characterization of different brain-derived subpopulations of plasma exosomes by surface plasmon resonance imaging. Anal Chem. 2018;90:8873–80.  https://doi.org/10.1021/acs.analchem.8b00941.CrossRefGoogle Scholar
  32. 32.
    Rupert DLM, Shelke GV, Emilsson G, Claudio V, Block S, Lässer C, et al. Dual-wavelength surface plasmon resonance for determining the size and concentration of sub-populations of extracellular vesicles. Anal Chem. 2016;88:9980–8.  https://doi.org/10.1021/acs.analchem.6b01860.CrossRefGoogle Scholar
  33. 33.
    Duraichelvan R, Srinivas B, Badilescu S, Ouellette R, Ghosh A, Packirisamy M. Exosomes detection by a label-free localized surface plasmonic resonance method. ECS Trans. 2016;75:11–7.  https://doi.org/10.1093/glycob/7.1.79.CrossRefGoogle Scholar
  34. 34.
    Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18:1835–40.  https://doi.org/10.1038/nm.2994.CrossRefGoogle Scholar
  35. 35.
    Sina AAI, Vaidyanathan R, Dey S, Carrascosa LG, Shiddiky MJA, Trau M. Real time and label free profiling of clinically relevant exosomes. Sci Rep. 2016;6:30460.  https://doi.org/10.1038/srep30460.CrossRefGoogle Scholar
  36. 36.
    Vasilakis N, Papadimitriou KI, Evans D, Morgan H, Prodromakis T. The Lab-on-PCB framework for affordable, electronic-based point-of-care diagnostics: from design to manufacturing. 2016 IEEE Healthc Innov Point-of-Care Technol Conf HI-POCT. 2016;2016:126–9.  https://doi.org/10.1109/HIC.2016.7797713.CrossRefGoogle Scholar
  37. 37.
    Roberts GS, Yu S, Zeng Q, Chan LCL, Anderson W, Colby AH, et al. Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens Bioelectron. 2012;31:17–25.  https://doi.org/10.1016/j.bios.2011.09.040.CrossRefGoogle Scholar
  38. 38.
    Carlsson J, Nordgren H, Sjöström J, Wester K, Villman K, Bengtsson NO, et al. HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer. 2004;90:2344–8.  https://doi.org/10.1038/sj.bjc.6601881.CrossRefGoogle Scholar
  39. 39.
    Coleman BM, Hanssen E, Lawson VA, Hill AF. Prion-infected cells regulate the release of exosomes with distinct ultrastructural features. FASEB J. 2012;26:4160–73.  https://doi.org/10.1096/fj.11-202077.CrossRefGoogle Scholar
  40. 40.
    De Vrij J, Maas SLN, Van Nispen M, Sena-Esteves M, Limpens RWA, Koster AJ, et al. Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine. 2013;8:1443–58.  https://doi.org/10.2217/nnm.12.173.CrossRefGoogle Scholar
  41. 41.
    Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14:1–14.  https://doi.org/10.1186/1471-2164-14-319.CrossRefGoogle Scholar
  42. 42.
    Cheng Z, Wang Z, Gillespie DE, Lausted C, Zheng Z, Yang M, et al. Plain silver surface plasmon resonance for microarray application. Anal Chem. 2015;87:1466–9.  https://doi.org/10.1021/ac504110t.CrossRefGoogle Scholar
  43. 43.
    Wang Z, Cheng Z, Singh V, Zheng Z, Wang Y, Li S, et al. Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures. Anal Chem. 2014;86:1430–6.  https://doi.org/10.1021/ac402126k.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Abu Ali Ibn Sina
    • 1
  • Ramanathan Vaidyanathan
    • 2
  • Alain Wuethrich
    • 1
  • Laura G. Carrascosa
    • 1
    Email author
  • Matt Trau
    • 1
    • 3
    Email author
  1. 1.Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia
  2. 2.Biomedical Institute for Global Health Research & TechnologyNational University of SingaporeSingaporeSingapore
  3. 3.School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations