Analytical and Bioanalytical Chemistry

, Volume 411, Issue 8, pp 1561–1568 | Cite as

Highly sensitive and selective “off-on” fluorescent sensing platform for ClO in water based on silicon quantum dots coupled with nanosilver

  • Lirong Liu
  • Gangbing Zhu
  • Wei Zeng
  • Baohe Lv
  • Yinhui YiEmail author
Research Paper


We present a new “off-on” fluorescence probe for detecting hypochlorite (ClO) based on silicon quantum dots coupled with silver nanoparticles (SiQDs/AgNPs) as nanocomplexes. Via introducing N-[3-(trimethoxysilyl)propyl]ethylenediamine and catechol as initial reactants, silicon quantum dots (SiQDs) with excellent properties were synthesized through a simple hydrothermal method. Transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of quantum dots. The fluorescence of SiQDs could be quenched by the silver nanoparticles (AgNPs) by surface plasmon-enhanced energy transfer (SPEET) from SiQDs (donor) to AgNPs (acceptor). The AgNPs could be etched by adding ClO, thus freeing the SiQDs from the AgNP surfaces and restoring the SiQDs’ fluorescence. The sensing system exhibits many advantages, such as wide linear response range, high sensitivity, and excellent selectivity. Under optimized conditions, wide linear ranges (from 0.1 to 100.0 μM) and low detection limits (0.08 μM) were obtained for ClO.

Graphical Abstract


ClO Silicon quantum dots Silver nanoparticles Probe Fluorescence 


Funding information

This study received support from the National Natural Science Foundation of China (21607061), the Opening Project of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University (2016017), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Collaborative Innovation Center of Technology and Material of Water Treatment, and the Program of Young Backbone Teachers in Jiangsu University (2015).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2019_1597_MOESM1_ESM.pdf (1.5 mb)
ESM 1 (PDF 1552 kb)


  1. 1.
    Lu T, Zhang L, Sun M, Deng D, Su Y, Yi L. Amino-functionalized metal-organic frameworks nanoplates-based energy transfer probe for highly selective fluorescence detection of free chlorine. Anal Chem. 2016;88(6):3413.CrossRefPubMedGoogle Scholar
  2. 2.
    Rook JJ. Formation of haloforms during chlorination of natural water. Acta Polytech Hung. 2002;42(2):234–43.Google Scholar
  3. 3.
    Bellar TA, Lichtenberg JJ, Kroner RC. The occurrence of organohalides in chlorinated drinking waters. J Am Water Works Assoc. 1974;66(12):703–6.CrossRefGoogle Scholar
  4. 4.
    Hanson SJ, Punzalan RC, Greenup RA, Liu H, Sato TT, Havens PL. Incidence and risk factors for venous thromboembolism in critically ill children after trauma. J Pediatr Surg. 2010;45(9):1920–1.CrossRefGoogle Scholar
  5. 5.
    Hinckley AF, Bachand AM, Reif JS. Late pregnancy exposures to disinfection by-products and growth-related birth outcomes. Environ Health Perspect. 2005;113(12):1808–13.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Emmanuel E, Keck G, Blanchard JM, Vermande P, Perrodin Y. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environ Int. 2004;30(7):891–900.CrossRefPubMedGoogle Scholar
  7. 7.
    Manish M, Rizwan SM, Khiem T, RS P, MA B. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67.CrossRefGoogle Scholar
  8. 8.
    Goiffon RJ, Martinez SC, Piwnicaworms D. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma. Nat Commun. 2015;6:6271.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol. 2001;158(3):879–91.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94(1):437–44.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pan S, Deen MJ, Ghosh R. Low-cost graphite-based free chlorine sensor. Anal Chem. 2015;87(21):10734–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Tang Y, Su Y, Yang N, Zhang L, Lv Y. Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem. 2014;86(9):4528.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Y, Zhang P, Lu Q, Wang Y, Fu W, Tan Q, et al. Water-soluble MoS2 quantum dots are a viable fluorescent probe for hypochlorite. Mikrochim Acta. 2018;185(4):233.CrossRefPubMedGoogle Scholar
  14. 14.
    Walekar LS, Pawar SP, Gore AH, Suryawanshi VD, Undare SS, Anbhule PV, et al. Surfactant stabilized AgNPs as a colorimetric probe for simple and selective detection of hypochlorite anion (ClO) in aqueous solution: environmental sample analysis. Colloid Surface A. 2016;491:78–85.CrossRefGoogle Scholar
  15. 15.
    Li K, Hou JT, Yang J, Yu XQ. A tumor-specific and mitochondria-targeted fluorescent probe for real-time sensing of hypochlorite in living cells. Chem Commun. 2017;53(40):5539–41.CrossRefGoogle Scholar
  16. 16.
    Yan L, Hu C, Li J. A fluorescence turn-on probe for rapid monitoring of hypochlorite based on coumarin Schiff base. Anal Bioanal Chem. 2018;410:7457.CrossRefPubMedGoogle Scholar
  17. 17.
    Hosseini MS, Hashemipour Z, Hosseini N. Synthesis of l-tyrosine-capped ZnSe quantum dots and its application to hypochlorite determination in water. Int J Environ Anal Chem. 2016;96(10):1–14.CrossRefGoogle Scholar
  18. 18.
    Park S, Choi S, Yu J. DNA-encapsulated silver nanodots as ratiometric luminescent probes for hypochlorite detection. Nanoscale Res Lett. 2014;9(1):129.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhan Y, Luo F, Guo L, Qiu B, Lin Y, Li J, et al. Preparation of an efficient ratiometric fluorescent nanoprobe (m-CDs@[Ru(bpy)3](2+)) for visual and specific detection of hypochlorite on site and in living cells. ACS Sens. 2017;2(11):1684–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang J, Yu SH. Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions. Nanoscale. 2014;6(8):4096–101.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang XD, Chen XK, Yang JJ, Jia HR, Li YH, Chen Z, et al. Quaternized silicon nanoparticles with polarity-sensitive fluorescence for selectively imaging and killing gram-positive bacteria. Adv Funct Mater. 2016;26(33):5958–70.CrossRefGoogle Scholar
  22. 22.
    Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, et al. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc. 2013;135(22):8350–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhong Y, Sun X, Wang S, Peng F, Bao F, Su Y, et al. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano. 2015;9(6):5958–67.CrossRefPubMedGoogle Scholar
  24. 24.
    Yan Y, Zhang K, Yu H, Zhu H, Sun M, Hayat T, et al. Sensitive detection of sulfide based on the self-assembly of fluorescent silver nanoclusters on the surface of silica nanospheres. Talanta. 2017;174:387–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Qu F, Xia W, Xia L, You J, Han W. A ratiometric detection of heparin with high sensitivity based on aggregation-enhanced emission of gold nanoclusters triggered by silicon nanoparticles. Talanta. 2019;193:37–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang Y, Ning X, Mao G, Ji X, He Z. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching. Anal Bioanal Chem. 2018;410(13):3209–16.CrossRefPubMedGoogle Scholar
  27. 27.
    Ma SD, Chen YL, Feng J, Liu JJ, Zuo XW, Chen XG. One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal Chem. 2016;88(21):10474–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang X, Chen X, Kai S, Wang HY, Yang J, Wu FG, et al. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal Chem. 2015;87(6):3360–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Yi Y, Deng J, Zhang Y, Li H, Yao S. Label-free Si quantum dots as photoluminescence probes for glucose detection. Chem Commun. 2013;49(6):612–4.CrossRefGoogle Scholar
  30. 30.
    Yi Y, Zhu G, Liu C, Huang Y, Zhang Y, Li H, et al. A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Anal Chem. 2013;85(23):11464–70.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen S, Quan Y, Yu Y-L, Wang J-H. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater-Sci Eng. 2017;3(3):313–21.CrossRefGoogle Scholar
  32. 32.
    Ma JL, Yin BC, Wu X, Ye BC. Simple and cost-effective glucose detection based on carbon nanodots supported on silver nanoparticles. Anal Chem. 2017;89(2):1323–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Li J, Li Y, Shahzad SA, Chen J, Chen Y, Wang Y, et al. Fluorescence turn-on detection of glucose via the Ag nanoparticle mediated release of a perylene probe. Chem Commun. 2015;51(29):6354–6.CrossRefGoogle Scholar
  34. 34.
    Sasikumar T, Ilanchelian M. Colorimetric detection of hypochlorite based on the morphological changes of silver nanoprisms to spherical nanoparticles. Anal Methods. 2017;9(21):3151–8.CrossRefGoogle Scholar
  35. 35.
    Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X. One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem. 2017;89(5):3001–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Feng J, Chen Y, Han Y, Liu J, Ren C, Chen X. Fluorescent carbon nanoparticles: a low-temperature trypsin-assisted preparation and Fe(3+) sensing. Anal Chim Acta. 2016;926:107–17.CrossRefPubMedGoogle Scholar
  37. 37.
    Ou S-H, Pan L-S, Jow J-J, Chen H-R, Ling T-R. Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of D and L phenylalanine. Biosens Bioelectron. 2018;105:143–50.CrossRefPubMedGoogle Scholar
  38. 38.
    Liu X, Yan Z, Sun Y, Ren J, Qu X. A label-free ratiometric electrochemical DNA sensor for monitoring intracellular redox homeostasis. Chem Commun. 2017;53(46):6215–8.CrossRefGoogle Scholar
  39. 39.
    Zhu X, Zhao T, Nie Z, Liu Y, Yao S. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis. Anal Chem. 2015;87(16):8524–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Yu Y, Tao Y, Yang B, Wu D, Qin Y, Kong Y. Smart chiral sensing platform with alterable enantioselectivity. Anal Chem. 2017;89(23):12930–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Dong Y, Li G, Zhou N, Wang R, Chi Y, Chen G. Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem. 2012;84(19):8378–82.CrossRefGoogle Scholar
  42. 42.
    Hu Y, Yang J, Jia L, Yu J-S. Ethanol in aqueous hydrogen peroxide solution: hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon. 2015;93:999–1007.CrossRefGoogle Scholar
  43. 43.
    Tang Q, Yang T, Huang Y. Copper nanocluster-based fluorescent probe for hypochlorite. Microchim Acta. 2015;182(13–14):2337–43.CrossRefGoogle Scholar
  44. 44.
    Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, et al. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem Commun. 2016;52(45):7288–91.CrossRefGoogle Scholar
  45. 45.
    Xue M, Zhang L, Zou M, Lan C, Zhan Z, Zhao S. Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sensors Actuators B Chem. 2015;219:50–6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lirong Liu
    • 1
  • Gangbing Zhu
    • 1
    • 2
  • Wei Zeng
    • 1
  • Baohe Lv
    • 1
  • Yinhui Yi
    • 1
    Email author
  1. 1.School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Department of Applied Biology and Chemical Technology, and the State Key Laboratory of ChirosciencesThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations