Advertisement

Shaping up field-deployable nucleic acid testing using microfluidic paper-based analytical devices

  • Tianyu Dong
  • Guan A. Wang
  • Feng LiEmail author
Review
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

Rapid, low-cost, and sensitive nucleic acid detection and quantification assays enabled by microfluidic paper-based analytical devices (μPADs) hold great promise for point-of-care disease diagnostics and field-based molecular tests. Through the capillary action in μPAD, flexible manipulation of nucleic acid samples can be achieved without the need for external pumps or power supplies, making it possible to fabricate highly integrated sample-to-answer devices that streamline the nucleic acid extraction, separation, concentration, amplification, and detection. To detect minute amounts of genetic materials from clinical and biological samples, it is also critical to develop sensitive signal readouts that generate physically detectable signals for in-device nucleic acid detection and/or quantification. In this review, we will focus on μPAD approaches for the facile manipulation of nucleic acids and emerging signal transduction strategies allowing sensitive and specific nucleic acid detection in μPAD.

Graphical abstract

Keywords

Paper-based analytical device Microfluidics Nucleic acid testing Point-of-care testing Field-deployable assays 

Notes

Funding information

This study received a financial support from the National Sciences and Engineering Research Council of Canada, the Ontario Centres of Excellence, the Ontario Ministry of Research, Innovation and Science, and the Brock University Start-Up Fund.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–44.CrossRefGoogle Scholar
  2. 2.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed. 2007;119:1340–2.CrossRefGoogle Scholar
  3. 3.
    Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87:19–41.CrossRefGoogle Scholar
  4. 4.
    Gong MM, Sinton D. Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev. 2017;117:8447–80.CrossRefGoogle Scholar
  5. 5.
    Magro L, Escadafal C, Garneret P, Jacquelin B, Kwasiborski A, Manuguerra J-C, et al. Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases. Lab Chip. 2017;17:2347–71.CrossRefGoogle Scholar
  6. 6.
    Fronczek CF, Park TS, Harshman DK, Nicolini AM, Yoon J-Y. Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 2014;4:11103.CrossRefGoogle Scholar
  7. 7.
    Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Böhringer KF. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip. 2012;12:174–81.CrossRefGoogle Scholar
  8. 8.
    Li X, Luo L, Crooks RM. Low-voltage paper isotachophoresis device for DNA focusing. Lab Chip. 2015;15:4090–8.CrossRefGoogle Scholar
  9. 9.
    Gong MM, Nosrati R, Gabriel MCS, Zini A, Sinton D. Direct DNA analysis with paper-based ion concentration polarization. J Am Chem Soc. 2015;137:13913–9.CrossRefGoogle Scholar
  10. 10.
    Rohrman BA, Richards-Kortum RR. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip. 2012;12:3082.CrossRefGoogle Scholar
  11. 11.
    Connelly JT, Rolland JP, Whitesides GM. “Paper Machine” for molecular diagnostics. Anal Chem. 2015;87:7595–601.CrossRefGoogle Scholar
  12. 12.
    Xu G, Nolder D, Reboud J, Oguike MC, Van Schalkwyk DA, Sutherland CJ, et al. Paper-origami-based multiplexed malaria diagnostics from whole blood. Angew Chem Int Ed. 2016;55:15250–3.CrossRefGoogle Scholar
  13. 13.
    Rosenfeld T, Bercovici M. Amplification-free detection of DNA in a paper-based microfluidic device using electroosmotically balanced isotachophoresis. Lab Chip. 2018;18:861–8.CrossRefGoogle Scholar
  14. 14.
    Liu M, Hui CY, Zhang Q, Gu J, Kannan B, Jahanshahi-Anbuhi S, et al. Target-induced and equipment-free DNA amplification with a simple paper device. Angew Chem Int Ed. 2016;55:2709–13.CrossRefGoogle Scholar
  15. 15.
    Seok Y, Joung H-A, Byun J-Y, Jeon H-S, Shin SJ, Kim S, et al. A paper-based device for performing loop-mediated isothermal amplification with real-time simultaneous detection of multiple DNA targets. Theranostics. 2017;7:2220–30.CrossRefGoogle Scholar
  16. 16.
    Yang Z, Xu G, Reboud J, Ali SA, Kaur G, Mcgiven J, et al. Rapid veterinary diagnosis of bovine reproductive infectious diseases from semen using paper-origami DNA microfluidics. ACS Sens. 2018;3:403–9.CrossRefGoogle Scholar
  17. 17.
    Chow WHA, Mccloskey C, Tong Y, Hu L, You Q, Kelly CP, et al. Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic clostridium difficile. J Mol Diagn. 2008;10:452–8.CrossRefGoogle Scholar
  18. 18.
    Shetty P, Ghosh D, Singh M, Tripathi A, Paul D. Rapid amplification of Mycobacterium tuberculosis DNA on a paper substrate. RSC Adv. 2016;6:56205–12.CrossRefGoogle Scholar
  19. 19.
    Lafleur LK, Bishop JD, Heiniger EK, Gallagher RP, Wheeler MD, Kauffman P, et al. A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip. 2016;16:3777–87.CrossRefGoogle Scholar
  20. 20.
    Toley BJ, Covelli I, Belousov Y, Ramachandran S, Kline E, Scarr N, et al. Isothermal strand displacement amplification (iSDA): a rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis. Analyst. 2015;140:7540–9.CrossRefGoogle Scholar
  21. 21.
    Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, et al. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip. 2016;16:611–21.CrossRefGoogle Scholar
  22. 22.
    Bender AT, Borysiak MD, Levenson AM, Lillis L, Boyle DS, Posner JD. Semiquantitative nucleic acid test with simultaneous isotachophoretic extraction and amplification. Anal Chem. 2018;90:7221–9.CrossRefGoogle Scholar
  23. 23.
    Tang R, Yang H, Gong Y, You M, Liu Z, Choi JR, et al. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab Chip. 2017;17:1270–9.CrossRefGoogle Scholar
  24. 24.
    Phillips EA, Moehling TJ, Bhadra S, Ellington AD, Linnes JC. Strand displacement probes combined with isothermal nucleic acid amplification for instrument-free detection from complex samples. Anal Chem. 2018;90:6580–6.CrossRefGoogle Scholar
  25. 25.
    Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al. Polydimethylsiloxane-paper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing. Anal Chem. 2016;88:6254–64.CrossRefGoogle Scholar
  26. 26.
    He Y, Zeng K, Zhang S, Gurung AS, Baloda M, Zhang X, et al. Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip. Biosens Bioelectron. 2012;31:310–5.CrossRefGoogle Scholar
  27. 27.
    Xu Y, Liu Y, Wu Y, Xia X, Liao Y, Li Q. Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Anal Chem. 2014;86:5611–4.CrossRefGoogle Scholar
  28. 28.
    Dragan AI, Pavlovic R, Mcgivney JB, Casas-Finet JR, Bishop ES, Strouse RJ, et al. SYBR Green I: fluorescence properties and interaction with DNA. J Fluoresc. 2012;22:1189–99.CrossRefGoogle Scholar
  29. 29.
    Cosa G, Focsaneanu K-S, Mclean JRN, Mcnamee JP, Scaiano JC. Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem Photobiol. 2007;73:585–99.CrossRefGoogle Scholar
  30. 30.
    Roy S, Mohd-Naim NF, Safavieh M, Ahmed MU. Colorimetric nucleic acid detection on paper microchip using loop mediated isothermal amplification and crystal violet dye. ACS Sens. 2017;2:1713–20.CrossRefGoogle Scholar
  31. 31.
    Wang AG, Dong T, Mansour H, Matamoros G, Sanchez AL, Li F. Paper-based DNA reader for visualized quantification of soil-transmitted helminth infections. ACS Sens. 2018;3:205–10.CrossRefGoogle Scholar
  32. 32.
    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356:438–42.CrossRefGoogle Scholar
  33. 33.
    Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360:439–44.CrossRefGoogle Scholar
  34. 34.
    Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018;360:444–8.CrossRefGoogle Scholar
  35. 35.
    Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem. 2009;81:1660–8.CrossRefGoogle Scholar
  36. 36.
    Ali MM, Aguirre SD, Xu Y, Filipe CDM, Pelton R, Li Y. Detection of DNA using bioactive paper strips. Chem. Commun. 2009;0:6640–2.Google Scholar
  37. 37.
    Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, et al. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip. 2013;13:4352.CrossRefGoogle Scholar
  38. 38.
    Takalkar S, Baryeh K, Liu G. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA. Biosens Bioelectron. 2017;98:147–54.CrossRefGoogle Scholar
  39. 39.
    Noor MO, Krull UJ. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem. 2014;86:10331–9.CrossRefGoogle Scholar
  40. 40.
    Noor MO, Hrovat D, Moazami-Goudarzi M, Espie GS, Krull UJ. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection. Anal Chim Acta. 2015;885:156–65.CrossRefGoogle Scholar
  41. 41.
    Doughan S, Uddayasankar U, Krull UJ. A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors. Anal Chim Acta. 2015;878:1–8.CrossRefGoogle Scholar
  42. 42.
    Doughan S, Uddayasankar U, Peri A, Krull UJ. A paper-based multiplexed resonance energy transfer nucleic acid hybridization assay using a single form of upconversion nanoparticle as donor and three quantum dots as acceptors. Anal Chim Acta. 2017;962:88–96.CrossRefGoogle Scholar
  43. 43.
    Lu J, Ge S, Ge L, Yan M, Yu J. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta. 2012;80:334–41.CrossRefGoogle Scholar
  44. 44.
    Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS. Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. Anal Chim Acta. 2018;1044:102–9.CrossRefGoogle Scholar
  45. 45.
    Li X, Scida K, Crooks RM. Detection of hepatitis B virus DNA with a paper electrochemical sensor. Anal Chem. 2015;87:9009–15.CrossRefGoogle Scholar
  46. 46.
    Du Y, Pothukuchy A, Gollihar JD, Nourani A, Li B, Ellington AD. Coupling sensitive nucleic acid amplification with commercial pregnancy test strips. Angew Chem In Ed. 2017;129:1012–6.CrossRefGoogle Scholar
  47. 47.
    Scida K, Li B, Ellington AD, Crooks RM. DNA detection using origami paper analytical devices. Anal Chem. 2013;85:9713–20.CrossRefGoogle Scholar
  48. 48.
    Allen PB, Arshad SA, Li B, Chen X, Ellington AD. DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform. Lab Chip. 2012;12:2951–8.CrossRefGoogle Scholar
  49. 49.
    Ying N, Ju C, Sun X, Li L, Chang H, Song G, et al. Lateral flow nucleic acid biosensor for sensitive detection of microRNAs based on the dual amplification strategy of duplex specific nuclease and hybridization chain reaction. PLoS One. 2017;12:e0185091.CrossRefGoogle Scholar
  50. 50.
    Green AA, Silver PA, Collins JJ, Yin P. Toehold switches: de-novo-designed regulators of gene expression. Cell. 2014;159:925–39.CrossRefGoogle Scholar
  51. 51.
    Pardee K, Green AA, Ferrante T, Cameron DE, Daleykeyser A, Yin P, et al. Paper-based synthetic gene networks. Cell. 2014;159:940–54.CrossRefGoogle Scholar
  52. 52.
    Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell. 2016;165:1255–66.CrossRefGoogle Scholar
  53. 53.
    Noh H, Phillips ST. Fluidic timers for time-dependent, point-of-care assays on paper. Anal Chem. 2010;82:8071–8.CrossRefGoogle Scholar
  54. 54.
    Yamada K, Suzuki K, Citterio D. Text-displaying colorimetric paper-based analytical device. ACS Sens. 2017;2:1247–54.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Centre for BiotechnologyBrock UniversitySt. CatharinesCanada
  2. 2.College of ChemistrySichuan UniversityChengduChina

Personalised recommendations