Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 9, pp 1839–1862 | Cite as

Go with the flow: advances and trends in magnetic flow cytometry

  • Rita Soares
  • Verónica C. MartinsEmail author
  • Rita Macedo
  • Filipe A. Cardoso
  • Sofia A. M. Martins
  • Diogo M. Caetano
  • Pedro H. Fonseca
  • Vânia Silvério
  • Susana Cardoso
  • Paulo P. Freitas
Review
Part of the following topical collections:
  1. Nanoparticles for Bioanalysis

Abstract

The growing need for biological information at the single cell level has driven the development of improved cytometry technologies. Flow cytometry is a particularly powerful method that has evolved over the past few decades. Flow cytometers have become essential instruments in biomedical research and routine clinical tests for disease diagnosis, prognosis, and treatment monitoring. However, the increasing number of cellular parameters unveiled by genomic, proteomic, and metabolomic data platforms demands an augmented multiplexability. Also, the need for identification and quantification of relevant biomarkers at low levels requires outstanding analytical sensitivity and reliability. In addition, growing awareness of the advantages associated with miniaturization of analytical devices is pushing forward the progress in integrated and compact, microfluidic-based devices at the point-of-care. In this context, novel types of flow cytometers are emerging during the search to tackle these challenges. Notwithstanding the relevance of other promising alternatives to standard optical flow cytometry (e.g., mass cytometry, various optical and electrical microcytometers), this report focuses on a recent microcytometric technology based on magnetic sensors and magnetic particles integrated into microfluidic structures for dynamic bioanalysis of fluid samples—magnetic flow cytometry. Its concept, main developments, targeted applications, as well as the challenges and trends behind this technology are presented and discussed.

Graphical abstract

ᅟ “Kindly advise whether there is online abstract figure for this paper. If so, kindly resupply.The graphical abstract is correctly supplied.

Keywords

Magnetic flow cytometry Magnetic sensors Magnetic particles Microfluidics Point-of-care 

Abbreviations

ADC

Analog to digital converter

AMR

Anisotropic magnetoresistance

FM

Ferromagnetic

GMI

Giant magneto impedance

GMR

Giant magnetoresistance

M

Metallic

MACS

Magnetically assisted cell sorting

MFC

Magnetic flow cytometry

MNPs

Magnetic nanoparticles

MR

Magnetoresistance

MRI

Magnetic resonance imaging

MTJ

Magnetic tunnel junctions

PHE

Planar Hall effect

PMTs

Photomultiplier tubes

PoC

Point-of-care

S

Sensitivity

SERF

Spin-exchange relaxation-free

SNR

Signal-to-noise ratio

SV

Spin valve

TMR

Tunneling magnetoresistance

TOF

Time-of-flight

Notes

Acknowledgements

This work has received funding from European Structural & Investment Funds through the COMPETE Program and from National Funds through FCT – Fundação para a Ciência e a Tecnologia under the grants SAICTPAC/0019/2015, MUSIC-PESSOA 2017-38027RF and MagScopy4IHC- LISBOA-01-0145-FEDER-031200. The authors acknowledge funding from the European Union through the project MAGNAMED- H2020-MSCA-RISE-2016 grant n. 734801. The authors R. Soares, D. M. Caetano and P. H. Fonseca, acknowledge their PhD grants, PD/BD/128205 /2016, PD/BD/128208/2016, PD/BD/135272/2017, respectively, funded through the Advanced Integrated Microsystems (AIM) doctoral program.

Compliance with ethical standards

No experiments involving human participants and/or animals have been conducted for this publication.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Moldavan A. Photo-electric technique for the counting of microscopical cells. Science. 1934;80:188–9.CrossRefGoogle Scholar
  2. 2.
    Hejazian M, Li W, Nguyen N-T. Lab on a chip for continuous-flow magnetic cell separation. Lab Chip. 2015;15:959–70.  https://doi.org/10.1039/C4LC01422G.CrossRefGoogle Scholar
  3. 3.
    Plouffe BD, Murthy SK, Lewis LH. Fundamentals and application of magnetic particles in cell isolation and enrichment. Rep Prog Phys. 2015;78:16601.  https://doi.org/10.1088/0034-4885/78/1/016601.CrossRefGoogle Scholar
  4. 4.
    Loureiro J, Fermon C, Pannetier-Lecoeur M, Arrias G, Ferreira R, Cardoso S, et al. Magnetoresistive detection of magnetic beads flowing at high speed in microfluidic channels. IEEE Trans Magn. 2009;45:4873–6.  https://doi.org/10.1109/TMAG.2009.2026287.CrossRefGoogle Scholar
  5. 5.
    Chícharo A, Martins M, Barnsley LC, Taouallah A, Fernandes J, Silva BFB, et al. Enhanced magnetic microcytometer with 3D flow focusing for cell enumeration. Lab Chip. 2018;18:2593–603.  https://doi.org/10.1039/C8LC00486B.CrossRefGoogle Scholar
  6. 6.
    Tasadduq B, Lam W, Alexeev A, Sarioglu AF, Sulchek T. Enhancing size based size separation through vertical focus microfluidics using secondary flow in a ridged microchannel. Sci Rep. 2017;7:17375.  https://doi.org/10.1038/s41598-017-17388-w.CrossRefGoogle Scholar
  7. 7.
    Zhao Y, Li Q, Hu X. Universally applicable three-dimensional hydrodynamic focusing in a single-layer channel for single cell analysis. Anal Methods. 2018;10:3489–97.  https://doi.org/10.1039/C8AY01017J.CrossRefGoogle Scholar
  8. 8.
    Bougas L, Langenegger LD, Mora CA, Zeltner M, Stark WJ, Wickenbrock A, et al. Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids. Sci Rep. 2018;8:3491.  https://doi.org/10.1038/s41598-018-21802-2.CrossRefGoogle Scholar
  9. 9.
    Fodil K, Denoual M, Dolabdjian C, Treizebre A, Senez V. In-flow detection of ultra-small magnetic particles by an integrated giant magnetic impedance sensor. Appl Phys Lett. 2016;108:173701.  https://doi.org/10.1063/1.4948286.CrossRefGoogle Scholar
  10. 10.
    Lin G, Karnaushenko DD, Bermúdez GSC, Schmidt OG, Makarov D. Magnetic suspension array technology: controlled synthesis and screening in microfluidic networks. Small. 2016;12:4553–62.  https://doi.org/10.1002/smll.201601166.CrossRefGoogle Scholar
  11. 11.
    Lin G, Makarov D, Medina-Sanchez M, Guix M, Baraban L, Cuniberti G, et al. Magnetofluidic platform for multidimensional magnetic and optical barcoding of droplets. Lab Chip. 2015;15:216–24.  https://doi.org/10.1039/c4lc01160k.CrossRefGoogle Scholar
  12. 12.
    Kim KW, Reddy V, Torati SR, Hu XH, Sandhu A, Kim CG. On-chip magnetometer for characterization of superparamagnetic nanoparticles. Lab Chip. 2015;15:696–703.  https://doi.org/10.1039/C4LC01076K.CrossRefGoogle Scholar
  13. 13.
    Lin G, Makarov D, Melzer M, Si W, Yan C, Schmidt OG. A highly flexible and compact magnetoresistive analytic device. Lab Chip. 2014;14:4050–8.  https://doi.org/10.1039/c4lc00751d.CrossRefGoogle Scholar
  14. 14.
    Fodil K, Denoual M, Dolabdjian C, Harnois M, Senez V. Dynamic sensing of magnetic nanoparticles in microchannel using GMI technology. IEEE Trans Magn. 2013;49:93–6.  https://doi.org/10.1109/TMAG.2012.2218797.CrossRefGoogle Scholar
  15. 15.
    Lin G, Baraban L, Han L, Karnaushenko D, Makarov D, Cuniberti G, et al. Magnetoresistive emulsion analyzer. Sci Rep. 2013;3:2548.CrossRefGoogle Scholar
  16. 16.
    Melzer M, Karnaushenko D, Makarov D, Baraban L, Calvimontes A, Mönch I, et al. Elastic magnetic sensor with isotropic sensitivity for in-flow detection of magnetic objects. RSC Adv. 2012;2:2284–8.  https://doi.org/10.1039/C2RA01062C.CrossRefGoogle Scholar
  17. 17.
    Pekas N, Porter MD, Tondra M, Popple A, Jander A. Giant magnetoresistance monitoring of magnetic picodroplets in an integrated microfluidic system. Appl Phys Lett. 2004;85:4783–5.  https://doi.org/10.1063/1.1825059.CrossRefGoogle Scholar
  18. 18.
    Reisbeck M, Richter L, Helou MJ, Arlinghaus S, Anton B, van Dommelen I, et al. Hybrid integration of scalable mechanical and magnetophoretic focusing for magnetic flow cytometry. Biosens Bioelectron. 2018;109:98–108.  https://doi.org/10.1016/j.bios.2018.02.046.CrossRefGoogle Scholar
  19. 19.
    Chícharo A, Barnsley L, Martins M, Cardoso S, Dieguez L, Espiña B, et al. Custom magnet design for a multi-channel magnetic microcytometer. IEEE Trans Magn. 2018;54:1–5.  https://doi.org/10.1109/TMAG.2018.2835369.CrossRefGoogle Scholar
  20. 20.
    García-Arribas A, Martínez F, Fernández E, Ozaeta I, Kurlyandskaya GV, Svalov AV, et al. GMI detection of magnetic-particle concentration in continuous flow. Sensors Actuators A Phys. 2011;172:103–8.  https://doi.org/10.1016/j.sna.2011.02.050.CrossRefGoogle Scholar
  21. 21.
    Mönch I, Makarov D, Koseva R, Baraban L, Karnaushenko D, Kaiser C, et al. Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects. ACS Nano. 2011;5:7436–42.  https://doi.org/10.1021/nn202351j.CrossRefGoogle Scholar
  22. 22.
    Aledealat K, Mihajlović G, Chen K, Field M, Sullivan GJ, Xiong P, et al. Dynamic micro-Hall detection of superparamagnetic beads in a microfluidic channel. J Magn Magn Mater. 2010;322:L69–72.  https://doi.org/10.1016/j.jmmm.2010.08.006.CrossRefGoogle Scholar
  23. 23.
    Loureiro J, Ferreira R, Cardoso S, Freitas PP, Germano J, Fermon C, et al. Toward a magnetoresistive chip cytometer: integrated detection of magnetic beads flowing at cm/s velocities in microfluidic channels. Appl Phys Lett. 2009;95:34104.  https://doi.org/10.1063/1.3182791.CrossRefGoogle Scholar
  24. 24.
    Shen W, Liu X, Mazumdar D, Xiao G. In situ detection of single micron-sized magnetic beads using magnetic tunnel junction sensors. Appl Phys Lett. 2005;86:253901.  https://doi.org/10.1063/1.1952582.CrossRefGoogle Scholar
  25. 25.
    Ferreira HA, Graham DL, Parracho P, Soares V, Freitas PP. Flow velocity measurement in microchannels using magnetoresistive chips. IEEE Trans Magn. 2004;40:2652–4.  https://doi.org/10.1109/TMAG.2004.830403.CrossRefGoogle Scholar
  26. 26.
    Murali P, Niknejad AM, Boser BE. CMOS microflow cytometer for magnetic label detection and classification. IEEE J Solid-State Circuits. 2017;52:543–55.  https://doi.org/10.1109/JSSC.2016.2621036.CrossRefGoogle Scholar
  27. 27.
    Reisbeck M, Helou MJ, Richter L, Kappes B, Friedrich O, Hayden O. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood. Sci Rep. 2016;6:32838.CrossRefGoogle Scholar
  28. 28.
    Lee C-P, Lai M-F, Huang H-T, Lin C-W, Wei Z-H. Wheatstone bridge giant-magnetoresistance based cell counter. Biosens Bioelectron. 2014;57:48–53.  https://doi.org/10.1016/j.bios.2014.01.028.CrossRefGoogle Scholar
  29. 29.
    Vila A, Martins VC, Chícharo A, Rodriguez-Abreu C, Fernandes AC, Cardoso FA, et al. Customized design of magnetic beads for dynamic magnetoresistive cytometry. IEEE Trans Magn. 2014;50:1–4.  https://doi.org/10.1109/TMAG.2014.2324411.CrossRefGoogle Scholar
  30. 30.
    Boser BE, Murali P. Flow cytometer-on-a-chip. In: 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings. Lausanne; 2014. p. 480–483.  https://doi.org/10.1109/BioCAS.2014.6981767.
  31. 31.
    Issadore D, Chung J, Shao H, Liong M, Ghazani AA, Castro CM, et al. Ultrasensitive clinical enumeration of rare cells ex vivo using a μ-Hall detector. Sci Transl Med. 2012;4:141ra92.  https://doi.org/10.1126/scitranslmed.3003747.CrossRefGoogle Scholar
  32. 32.
    Loureiro J, Andrade PZ, Cardoso S, da Silva CL, Cabral JM, Freitas PP. Magnetoresistive chip cytometer. Lab Chip. 2011;11:2255–61.  https://doi.org/10.1039/c0lc00324g.CrossRefGoogle Scholar
  33. 33.
    Duarte C, Costa T, Carneiro C, Soares R, Jitariu A, Cardoso S, et al. Semi-quantitative method for Streptococci magnetic detection in raw milk. Biosensors. 2016;6:19.  https://doi.org/10.3390/bios6020019.CrossRefGoogle Scholar
  34. 34.
    Fernandes AC, Duarte CM, Cardoso FA, Bexiga R, Cardoso S, Freitas PP. Lab-on-Chip cytometry based on magnetoresistive sensors for bacteria detection in milk. Sensors (Basel). 2014;14:15496–524.  https://doi.org/10.3390/s140815496.CrossRefGoogle Scholar
  35. 35.
    Issadore D, Chung HJ, Chung J, Budin G, Weissleder R, Lee H. muHall chip for sensitive detection of bacteria. Adv Healthc Mater. 2013;2:1224–8.  https://doi.org/10.1002/adhm.201200380.CrossRefGoogle Scholar
  36. 36.
    McGuire T, Potter R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans Magn. 1975;11:1018–38.  https://doi.org/10.1109/TMAG.1975.1058782.CrossRefGoogle Scholar
  37. 37.
    van de Veerdonk RJM, Beliën PJL, Schep KM, Kools JCS, de Nooijer MC, Gijs MAM, et al. 1/f noise in anisotropic and giant magnetoresistive elements. J Appl Phys. 1997;82:6152–64.  https://doi.org/10.1063/1.366533.CrossRefGoogle Scholar
  38. 38.
    Nguyen Van Dau F, Schuhl A, Childress JR, Sussiau M. Magnetic sensors for nanotesla detection using planar Hall effect. Sensors Actuators A Phys. 1996;53:256–60.  https://doi.org/10.1016/0924-4247(96)01152-1.CrossRefGoogle Scholar
  39. 39.
    Ejsing L, Hansen MF, Menon AK, Ferreira HA, Graham DL, Freitas PP. Planar Hall effect sensor for magnetic micro- and nanobead detection. Appl Phys Lett. 2004;84:4729–31.  https://doi.org/10.1063/1.1759380.CrossRefGoogle Scholar
  40. 40.
    Damsgaard C, Cardoso S, Freitas P, Hansen M. Exchange-biased planar Hall effect sensor optimized for biosensor applications. J Appl Phys. 2008;103(7):07A302–07A302-3.CrossRefGoogle Scholar
  41. 41.
    Freitas P, Ferreira H, Graham D, Clarke L, Amaral M, Martins V, et al. Magnetoresistive biochips E. In: Johnson M, editor. Magnetoelectronics. Amsterdam: Elsevier.Google Scholar
  42. 42.
    Baibich MN, Broto JM, Fert A, Van Dau FN, Petroff F, Etienne P, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett. 1988;61:2472–5.  https://doi.org/10.1103/PhysRevLett.61.2472.CrossRefGoogle Scholar
  43. 43.
    Binasch G, Grünberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B. 1989;39:4828–30.  https://doi.org/10.1103/PhysRevB.39.4828.CrossRefGoogle Scholar
  44. 44.
    Dieny B, Speriosu VS, Parkin SSP, Gurney BA, Wilhoit DR, Mauri D. Giant magnetoresistive in soft ferromagnetic multilayers. Phys Rev B. 1991;43:1297–300.  https://doi.org/10.1103/PhysRevB.43.1297.CrossRefGoogle Scholar
  45. 45.
    Heim DE, Fontana RE, Tsang C, Speriosu VS, Gurney BA, Williams ML. Design and operation of spin valve sensors. IEEE Trans Magn. 1994;30:316–21.  https://doi.org/10.1109/20.312279.CrossRefGoogle Scholar
  46. 46.
    Freitas PP, Ferreira R, Cardoso S, Cardoso F. Magnetoresistive sensors. J Phys Condens Matter. 2007;19:165221.  https://doi.org/10.1088/0953-8984/19/16/165221.CrossRefGoogle Scholar
  47. 47.
    Hayakawa J, Ikeda S, Lee YM, Matsukura F, Ohno H. Effect of high annealing temperature on giant tunnel magnetoresistance ratio of CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett. 2006;89:232510.  https://doi.org/10.1063/1.2402904.CrossRefGoogle Scholar
  48. 48.
    Graham DL, Ferreira HA, Freitas PP. Magnetoresistive-based biosensors and biochips. Trends Biotechnol. 2004;22:455–62.  https://doi.org/10.1016/j.tibtech.2004.06.006.CrossRefGoogle Scholar
  49. 49.
    Krieg E, Weissman H, Shirman E, Shimoni E, Rybtchinski B. A recyclable supramolecular membrane for size-selective separation of nanoparticles. Nature Nanotechnol. 2011;6:141–6.  https://doi.org/10.1038/nnano.2010.274.CrossRefGoogle Scholar
  50. 50.
    Robertson JD, Rizzello L, Avi M, Gaitzsch J. Purification of nanoparticles by size and shape. Sci Rep. 2016;6:27494.  https://doi.org/10.1038/srep27494.CrossRefGoogle Scholar
  51. 51.
    Helou M, Reisbeck M, Tedde SF, Richter L, Bär L, Bosch JJ, et al. Time-of-flight magnetic flow cytometry in whole blood with integrated sample preparation. Lab Chip. 2013;13:1035–8.  https://doi.org/10.1039/c3lc41310a.CrossRefGoogle Scholar
  52. 52.
    Martins SSA, Martins VC, Cardoso FA, Freitas PP, Fonseca LP. Waterborne pathogen detection using a magnetoresistive immuno-chip BT. In: Tiquia-Arashiro SM, editor. Molecular biological technologies for ocean sensing. Totowa: Humana; 2012. p. 263–88.CrossRefGoogle Scholar
  53. 53.
    He J, Huang M, Wang D, Zhang Z, Li G. Magnetic separation techniques in sample preparation for biological analysis: a review. J Pharm Biomed Anal. 2014;101:84–101.  https://doi.org/10.1016/j.jpba.2014.04.017.CrossRefGoogle Scholar
  54. 54.
    Ripka P, Janosek M. Advances in magnetic field sensors. IEEE Sens J. 2010;10:1108–16.  https://doi.org/10.1109/JSEN.2010.2043429.CrossRefGoogle Scholar
  55. 55.
    Hoffman RA, Wood JCS. Characterization of flow cytometer instrument sensitivity. Curr Protoc Cytom. 2007;40:1.20.1–1.20.18.  https://doi.org/10.1002/0471142956.cy0120s40.Google Scholar
  56. 56.
    Jiang Z, Llandro J, Mitrelias T, Bland JAC. An integrated microfluidic cell for detection, manipulation, and sorting of single micron-sized magnetic beads. J Appl Phys. 2006;99:08S105.  https://doi.org/10.1063/1.2176238.CrossRefGoogle Scholar
  57. 57.
    Piyasena ME, Graves SW. The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip. 2014;14:1044–59.  https://doi.org/10.1039/C3LC51152A.CrossRefGoogle Scholar
  58. 58.
    Frankowski M, Theisen J, Kummrow A, Simon P, Ragusch H, Bock N, et al. Microflow cytometers with integrated hydrodynamic focusing. Sensors (Basel). 2013;13(4):4674–93.CrossRefGoogle Scholar
  59. 59.
    Wolff A, Perch-Nielsen IR, Larsen UD, Friis P, Goranovic G, Poulsen CR, et al. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip. 2003;3:22–7.  https://doi.org/10.1039/b209333b.CrossRefGoogle Scholar
  60. 60.
    Liu C, Stakenborg T, Peeters S, Lagae L. Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys. 2009;105:102014.  https://doi.org/10.1063/1.3116091.CrossRefGoogle Scholar
  61. 61.
    Huang C, Zhou X, Ying D, Hall DA. A GMR-based magnetic flow cytometer using matched filtering. In: 2017 IEEE Sensors. Glasgow, 2017. p. 1–3.  https://doi.org/10.1109/ICSENS.2017.8233892.
  62. 62.
    Sun X, Feng Z, Zhi S, Lei C, Zhang D, Zhou Y. An integrated microfluidic system using a micro-fluxgate and micro spiral coil for magnetic microbeads trapping and detecting. Sci Rep. 2017;7:12967.  https://doi.org/10.1038/s41598-017-13389-x.CrossRefGoogle Scholar
  63. 63.
    Cardoso FA, Costa T, Germano J, Cardoso S, Borme J, Gaspar J, et al. Integration of magnetoresistive biochips on a CMOS circuit. IEEE Trans Magn. 2012;48:3784–7.  https://doi.org/10.1109/TMAG.2012.2198449.CrossRefGoogle Scholar
  64. 64.
    Costa T, Cardoso FA, Germano J, Freitas PP, Piedade MS. A CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications. IEEE Trans Biomed Circuits Syst. 2017;11:988–1000.  https://doi.org/10.1109/TBCAS.2017.2743685.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rita Soares
    • 1
    • 2
  • Verónica C. Martins
    • 1
    • 3
    Email author
  • Rita Macedo
    • 1
  • Filipe A. Cardoso
    • 1
    • 3
  • Sofia A. M. Martins
    • 1
    • 3
  • Diogo M. Caetano
    • 2
    • 4
  • Pedro H. Fonseca
    • 1
    • 2
  • Vânia Silvério
    • 1
    • 2
  • Susana Cardoso
    • 1
    • 2
  • Paulo P. Freitas
    • 1
    • 5
  1. 1.INESC–Microsistemas e Nanotecnologias (INESC-MN) and INLisbonPortugal
  2. 2.Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  3. 3.Magnomics S.A., Parque Tecnológico de CantanhedeCantanhedePortugal
  4. 4.INESC–IDLisbonPortugal
  5. 5.INL, International Iberian Nanotechnology LaboratoryBragaPortugal

Personalised recommendations