Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 8, pp 1495–1502 | Cite as

GC–QTOFMS with a low-energy electron ionization source for advancing isotopologue analysis in 13C-based metabolic flux analysis

  • Teresa MairingerEmail author
  • Jennifer Sanderson
  • Stephan Hann
Communication

Abstract

For the study of different levels of (intra)cellular regulation and condition-dependent insight into metabolic activities, fluxomics experiments based on stable isotope tracer experiments using 13C have become a well-established approach. The experimentally obtained non-naturally distributed 13C labeling patterns of metabolite pools can be measured by mass spectrometric detection with front-end separation and can be consequently incorporated into biochemical network models. Here, despite a tedious derivatization step, gas chromatographic separation of polar metabolites is favorable because of the wide coverage range and high isomer separation efficiency. However, the typically employed electron ionization energy of 70 eV leads to significant fragmentation and consequently only low-abundant ions with an intact carbon backbone. Since these ions are considered a prerequisite for the analysis of the non-naturally distributed labeling patterns and further integration into modeling strategies, a softer ionization technique is needed. In the present work, a novel low energy electron ionization source is optimized for the analysis of primary metabolites and compared with a chemical ionization approach in terms of trueness, precision, and sensitivity.

Keywords

Gas chromatography–mass spectrometry Low energy electron ionization Metabolic flux analysis Isotope labeling experiments Metabolomics 

Notes

Acknowledgements

Agilent Technologies Inc. is acknowledged for a University Relation Research Grant for the project “GC/Q-TOF with Low-Energy Electron Impact Ionization Source for Advancing Isotopologue Analysis in Fluxomics“. Christina Troyer is acknowledged for valuable scientific discussions. EQ VIBT is acknowledged for providing mass spectrometry instrumentation. Gerrit Hermann from ISOtopic Solutions is acknowledged for his support in providing cell material.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2019_1590_MOESM1_ESM.pdf (318 kb)
ESM 1 (PDF 317 kb)

References

  1. 1.
    Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol. 2006;2:62.  https://doi.org/10.1038/msb4100109.CrossRefGoogle Scholar
  2. 2.
    Wiechert W. 13C metabolic flux analysis. Metab Eng. 2001;3:195–206.  https://doi.org/10.1006/mben.2001.0187.CrossRefGoogle Scholar
  3. 3.
    Antoniewicz MR. 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotechnol. 2013;24:1116–21.  https://doi.org/10.1016/j.copbio.2013.02.003.CrossRefGoogle Scholar
  4. 4.
    Tam YY, Normanly J. Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography–selected ion monitoring-mass spectrometry. J Chromatogr A. 1998;800:101–8.CrossRefGoogle Scholar
  5. 5.
    Fiehn O, Kopka J, Trethewey RN, Willmitzer L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem. 2000;72:3573–80.  https://doi.org/10.1021/ac991142i.CrossRefGoogle Scholar
  6. 6.
    Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2005;56:219–43.  https://doi.org/10.1093/jxb/eri069.CrossRefGoogle Scholar
  7. 7.
    Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009;81:10038–48.  https://doi.org/10.1021/ac9019522.CrossRefGoogle Scholar
  8. 8.
    Van Winden WA, Wittmann C, Heinzle E, Heijnen JJ. Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng. 2002;80:477–9.  https://doi.org/10.1002/bit.10393.CrossRefGoogle Scholar
  9. 9.
    Millard P, Letisse F, Sokol S, Portais J-C. IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics. 2012;28:1294–6.  https://doi.org/10.1093/bioinformatics/bts127.CrossRefGoogle Scholar
  10. 10.
    Jungreuthmayer C, Neubauer S, Mairinger T, Zanghellini J, Hann S. ICT: isotope correction toolbox. Bioinformatics. 2015;32:154–6.  https://doi.org/10.1093/bioinformatics/btv514.Google Scholar
  11. 11.
    Cipollina C, ten Pierick A, Canelas AB, Seifar RM, van Maris AJA, van Dam JC, et al. A comprehensive method for the quantification of the non-oxidative pentose phosphate pathway intermediates in Saccharomyces cerevisiae by GC–IDMS. J Chromatogr B. 2009;877:3231–6.  https://doi.org/10.1016/j.jchromb.2009.07.019.CrossRefGoogle Scholar
  12. 12.
    Vielhauer O, Zakhartsev M, Horn T, Takors R, Reuss M. Simplified absolute metabolite quantification by gas chromatography–isotope dilution mass spectrometry on the basis of commercially available source material. J Chromatogr B. 2011;879:3859–70.  https://doi.org/10.1016/j.jchromb.2011.10.036.CrossRefGoogle Scholar
  13. 13.
    Chu DB, Troyer C, Mairinger T, Ortmayr K, Neubauer S, Koellensperger G, et al. Isotopologue analysis of sugar phosphates in yeast cell extracts by gas chromatography chemical ionization time-of-flight mass spectrometry. Anal Bioanal Chem. 2015;407:2865–75.  https://doi.org/10.1007/s00216-015-8521-9.CrossRefGoogle Scholar
  14. 14.
    Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics. 2011;7:307–28.  https://doi.org/10.1007/s11306-010-0254-3.CrossRefGoogle Scholar
  15. 15.
    Nocon J, Steiger M, Mairinger T, Hohlweg J, Rußmayer H, Hann S, et al. Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris. Appl Microbiol Biotechnol. 2016;100:5955–63.  https://doi.org/10.1007/s00253-016-7363-5.CrossRefGoogle Scholar
  16. 16.
    Ata Ö, Rebnegger C, Tatto NE, Valli M, Mairinger T, Hann S, et al. A single Gal4-like transcription factor activates the Crabtree effect in Komagataella phaffii. Nat Commun. 2018;9:4911.  https://doi.org/10.1038/s41467-018-07430-4.CrossRefGoogle Scholar
  17. 17.
    Li Z, Li Y, Chen W, Cao Q, Guo Y, Wan N, et al. Integrating MS1 and MS2 scans in high-resolution parallel reaction monitoring assays for targeted metabolite quantification and dynamic 13C-labeling metabolism analysis. Anal Chem. 2017;89:877–85.  https://doi.org/10.1021/acs.analchem.6b03947.CrossRefGoogle Scholar
  18. 18.
    Kappelmann J, Klein B, Geilenkirchen P, Noack S. Comprehensive and accurate tracking of carbon origin of LC-tandem mass spectrometry collisional fragments for 13C-MFA. Anal Bioanal Chem. 2017;409:2309–26.  https://doi.org/10.1007/s00216-016-0174-9.CrossRefGoogle Scholar
  19. 19.
    McCloskey D, Young JD, Xu S, Palsson BO, Feist AM. MID Max: LC–MS/MS method for measuring the precursor and product mass isotopomer distributions of metabolic intermediates and cofactors for metabolic flux analysis applications. Anal Chem. 2016;88:1362–70.  https://doi.org/10.1021/acs.analchem.5b03887.CrossRefGoogle Scholar
  20. 20.
    Mairinger T, Steiger M, Nocon J, Mattanovich D, Koellensperger G, Hann S. Gas chromatography-quadrupole time-of-flight mass spectrometry-based determination of isotopologue and tandem mass isotopomer fractions of primary metabolites for 13C-metabolic flux analysis. Anal Chem. 2015;87:11792–802.  https://doi.org/10.1021/acs.analchem.5b03173.CrossRefGoogle Scholar
  21. 21.
    Maccoll A. Low energy, low temperature mass spectra. 6—a synoptic view. Org Mass Spectrom. 1986;21:601–11.  https://doi.org/10.1002/oms.1210211003.CrossRefGoogle Scholar
  22. 22.
    Abebe M, Maccoll A, Bowen RD. Low-energy, low-temperature mass spectra. Part 17: selected aliphatic amides. Eur Mass Spectrom. 1997;3:197–208.  https://doi.org/10.1255/ejms.39.CrossRefGoogle Scholar
  23. 23.
    Millard P, Massou S, Portais J-C, Létisse F. Isotopic studies of metabolic systems by mass spectrometry: using Pascal’s triangle to produce biological standards with fully controlled labeling patterns. Anal Chem. 2014;86:10288–95.  https://doi.org/10.1021/ac502490g.CrossRefGoogle Scholar
  24. 24.
    Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T. Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem. 2006;78:1272–81.CrossRefGoogle Scholar
  25. 25.
    Magnusson B, Örnemark U, editors. Eurachem guide: the fitness for purpose of analytical methods – a laboratory guide to method validation and related topics. 2nd ed. 2014.Google Scholar
  26. 26.
    Heuillet M, Bellvert F, Cahoreau E, Letisse F, Millard P, Portais J-C. Methodology for the validation of isotopic analyses by mass spectrometry in stable-isotope labeling experiments. Anal Chem. 2018;90:1852–60.  https://doi.org/10.1021/acs.analchem.7b03886.CrossRefGoogle Scholar
  27. 27.
    Mairinger T, Hann S. Implementation of data-dependent isotopologue fragmentation in 13C-based metabolic flux analysis. Anal Bioanal Chem. 2017;409:3713–8.  https://doi.org/10.1007/s00216-017-0339-1.CrossRefGoogle Scholar
  28. 28.
    Mairinger T, Wegscheider W, Peña DA, Steiger MG, Koellensperger G, Zanghellini J, et al. Comprehensive assessment of measurement uncertainty in 13C-based metabolic flux experiments. Anal Bioanal Chem. 2018;410:3337–48.  https://doi.org/10.1007/s00216-018-1017-7.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Natural Resources and Life Sciences—BOKU ViennaViennaAustria
  2. 2.EAWAG: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  3. 3.Agilent Technologies IncSanta ClaraUSA

Personalised recommendations