Advertisement

Fabrication of micro-patterned substrates for plasmonic sensing by piezo-dispensing of colloidal nanoparticles

  • Angelina Pittner
  • Sebastian Wendt
  • David Zopf
  • André Dathe
  • Norman Grosse
  • Andrea Csáki
  • Wolfgang Fritzsche
  • Ondrej StranikEmail author
Research Paper
  • 38 Downloads

Abstract

In this work we describe a very fast and flexible method for fabrication of plasmon-supporting substrates with micro-patterning capability, which is optimized for plasmonic sensing. We combined a wet chemistry approach to synthesize metallic nanoparticles with a piezo-dispensing system enabling deposition of nanoparticles on the substrates with micrometer precision. In this way, an arbitrary pattern consisting of 200 μm small spots containing plasmonic nanostructures can be produced. Patterns with various nanoparticles exhibiting different plasmonic properties were combined, and the surface density of the particles could be easily varied via their solution concentrations. We showed that under controlled conditions the dispensing process caused no aggregation of the particles and it enabled full transfer of the colloidal solutions onto the substrate. This is an important condition, which enables these substrates to be used for reliable plasmonic sensing based on monitoring the spectral shift of the nanoparticles. We demonstrated the functionality of such substrates by detection of small protein adsorption on the spots based on plasmon label-free sensing method.

Keywords

Nanofabrication Plasmonic Nanoparticles Sensing Spotting 

Notes

Acknowledgements

This work was financially supported by EU Era-NET/ Federal Ministry of Education and Research Germany (BMBF) projects, WaterChip (FKZ: 01DQ16009A), RA-detect (IGSTC 2015, FKZ: 01DQ16003) and RAPID (FKZ: 01DH17058). The Jenaer Biochip initiative (JBCI) is gratefully acknowledged for providing access to the GeSIM microarray spotter.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2019_1587_MOESM1_ESM.pdf (655 kb)
ESM 1 (PDF 654 kb)

References

  1. 1.
    Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1983.Google Scholar
  2. 2.
    Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer; 2010.Google Scholar
  3. 3.
    Atwater HA. The promise of plasmonics. Sci Am. 2007;296:56–62.  https://doi.org/10.1038/scientificamerican0407-56.CrossRefGoogle Scholar
  4. 4.
    Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, et al. Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett. 2014;14:4499–504.  https://doi.org/10.1021/nl5014986.CrossRefGoogle Scholar
  5. 5.
    Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ. Solar vapor generation enabled by nanoparticles. ACS Nano. 2013;7:42–9.  https://doi.org/10.1021/nn304948h.CrossRefGoogle Scholar
  6. 6.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater. 2010;9:193–204.  https://doi.org/10.1038/nmat2630.CrossRefGoogle Scholar
  7. 7.
    Gramotnev DK, Bozhevolnyi SI. Nanofocusing of electromagnetic radiation. Nat Photonics. 2013;8:13–22.  https://doi.org/10.1038/nphoton.2013.232.CrossRefGoogle Scholar
  8. 8.
    Okamoto T, H’Dhili F, Kawata S. Towards plasmonic band gap laser. Appl Phys Lett. 2004;85:3968–70.CrossRefGoogle Scholar
  9. 9.
    Toppari JJ, Wirth J, Garwe F, Stranik O, Csaki A, Bergmann J, et al. Plasmonic coupling and long-range transfer of an excitation along a DNA nanowire. ACS Nano. 2013;7:1291–8.  https://doi.org/10.1021/nn304789w.CrossRefGoogle Scholar
  10. 10.
    Hering K, Cialla D, Ackermann K, Dorfer T, Moller R, Schneidewind H, et al. SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem. 2008;390:113–24.  https://doi.org/10.1007/s00216-007-1667-3.CrossRefGoogle Scholar
  11. 11.
    Stranik O, McEvoy HM, McDonagh C, MacCraith BD. Plasmonic enhancement of fluorescence for sensor applications. Sensors Actuators B Chem. 2005;107:148–53.CrossRefGoogle Scholar
  12. 12.
    Chen K, Duy Dao T, Nagao T. Tunable nanoantennas for surface enhanced infrared absorption spectroscopy by colloidal lithography and post-fabrication etching. Sci Rep. 2017;7:44069.  https://doi.org/10.1038/srep44069.CrossRefGoogle Scholar
  13. 13.
    Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev. 2011;111:3828–57.  https://doi.org/10.1021/cr100313v.CrossRefGoogle Scholar
  14. 14.
    Mayer KM, Hao F, Lee S, Nordlander P, Hafner JH. A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology. 2010;21:255503.  https://doi.org/10.1088/0957-4484/21/25/255503.CrossRefGoogle Scholar
  15. 15.
    Enoch S, Bonod N. Plasmonics: from basics to advanced topics. New York: Springer; 2012.CrossRefGoogle Scholar
  16. 16.
    Lin Y, Zou Y, Mo Y, Guo J, Lindquist RG. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors. 2010;10:9397–406.  https://doi.org/10.3390/s101009397.CrossRefGoogle Scholar
  17. 17.
    Chen WB, Abeysinghe DC, Nelson RL, Zhan QW. Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett. 2009;9:4320–5.  https://doi.org/10.1021/nl903145p.CrossRefGoogle Scholar
  18. 18.
    Lu C, Lipson RH. Interference lithography: a powerful tool for fabricating periodic structures. Laser Photonics Rev. 2009;4:568–80.  https://doi.org/10.1002/lpor.200810061.CrossRefGoogle Scholar
  19. 19.
    Kooy N, Mohamed K, Pin L, Guan O. A review of roll-to-roll nanoimprint lithography. Nanoscale Res Lett. 2014;9:320.  https://doi.org/10.1186/1556-276X-9-320.CrossRefGoogle Scholar
  20. 20.
    Pelton M, Aizpurua J, Bryant G. Metal-nanoparticle plasmonics. Laser Photonics Rev. 2008;2:136–59.  https://doi.org/10.1002/lpor.200810003.CrossRefGoogle Scholar
  21. 21.
    Cortie MB, McDonagh AM. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev. 2011;111:3713–35.  https://doi.org/10.1021/cr1002529.CrossRefGoogle Scholar
  22. 22.
    Lalisse A, Tessier G, Plain J, Baffou G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J Phys Chem C. 2015;119:25518–28.  https://doi.org/10.1021/acs.jpcc.5b09294.CrossRefGoogle Scholar
  23. 23.
    Ma J, Lee SM-Y, Yi C, Li C-W. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications – a review. Lab Chip. 2017;17:209–26.  https://doi.org/10.1039/C6LC01049K.CrossRefGoogle Scholar
  24. 24.
    Baptista P, Doria G, Henriques D, Pereira E, Franco R. Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol. 2005;119:111–7.  https://doi.org/10.1016/j.jbiotec.2005.02.019.CrossRefGoogle Scholar
  25. 25.
    Borghei Y-S, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R. Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal Chim Acta. 2016;904:92–7.  https://doi.org/10.1016/j.aca.2015.11.026.CrossRefGoogle Scholar
  26. 26.
    Jatschka J, Dathe A, Csáki A, Fritzsche W, Stranik O. Propagating and localized surface plasmon resonance sensing — a critical comparison based on measurements and theory. Sens Bio-Sens Res. 2016;7:62–70.  https://doi.org/10.1016/j.sbsr.2016.01.003.CrossRefGoogle Scholar
  27. 27.
    Csaki A, Jahn F, Latka I, Henkel T, Malsch D, Schneider T, et al. Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers. Small. 2010;6:2584–9.  https://doi.org/10.1002/smll.201001071.CrossRefGoogle Scholar
  28. 28.
    Schmitt J, Decher G. Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure. Adv Mater. 1997;9:61–5.CrossRefGoogle Scholar
  29. 29.
    Stranik O, Iacopino D, Nooney R, McDonagh C, MacCraith BD. Optical properties of micro-patterned silver nanoparticle substrates. J Fluoresc. 2010;20:215–23.  https://doi.org/10.1007/s10895-009-0541-4.CrossRefGoogle Scholar
  30. 30.
    Singh G, Chan H, Baskin A, Gelman E, Repnin N, Kral P, et al. Self-assembly of magnetite nanocubes into helical superstructures. Science. 2014;345:1149–53.  https://doi.org/10.1126/science.1254132.CrossRefGoogle Scholar
  31. 31.
    Hanske C, Müller MB, Bieber V, Tebbe M, Jessl S, Wittemann A, et al. The role of substrate wettability in nanoparticle transfer from wrinkled elastomers: fundamentals and application toward hierarchical patterning. Langmuir. 2012;28:16745–50.  https://doi.org/10.1021/la304028f.CrossRefGoogle Scholar
  32. 32.
    Barbulovic-Nad I, Lucente M, Sun Y, Zhang M, Wheeler AR, Bussmann M. Bio-microarray fabrication techniques—a review. Crit Rev Biotechnol. 2006;26:237–59.  https://doi.org/10.1080/07388550600978358.CrossRefGoogle Scholar
  33. 33.
    Li J, Rossignol F, Macdonald J. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab Chip. 2015;15:2538–58.  https://doi.org/10.1039/C5LC00235D.CrossRefGoogle Scholar
  34. 34.
    Maitra A. The human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res. 2004;14:812–9.  https://doi.org/10.1101/gr.2228504.CrossRefGoogle Scholar
  35. 35.
    Seong S-Y. Microimmunoassay using a protein chip: optimizing conditions for protein immobilization. Clin Vaccine Immunol. 2002;9:927–30.  https://doi.org/10.1128/CDLI.9.4.927-930.2002.CrossRefGoogle Scholar
  36. 36.
    Sun J, Bao B, He M, Zhou H, Song Y. Recent advances in controlling the depositing morphologies of inkjet droplets. ACS Appl Mater Interfaces. 2015;7:28086–99.  https://doi.org/10.1021/acsami.5b07006.CrossRefGoogle Scholar
  37. 37.
    Park J, Moon J. Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir. 2006;22:3506–13.  https://doi.org/10.1021/la053450j.CrossRefGoogle Scholar
  38. 38.
    Blättler TM, Senn P, Textor M, Vörös J, Reimhult E. Microarray spotting of nanoparticles. Colloids Surf A Physicochem Eng Asp. 2009;346:61–5.  https://doi.org/10.1016/j.colsurfa.2009.05.026.CrossRefGoogle Scholar
  39. 39.
    Chiolerio A, Rajan K, Roppolo I, Chiappone A, Bocchini S, Perrone D. Silver nanoparticle ink technology: state of the art. Nanotechnol Sci Appl. 2016;9:1–13.  https://doi.org/10.2147/NSA.S68080.CrossRefGoogle Scholar
  40. 40.
    Balliu E, Andersson H, Engholm M, Öhlund T, Nilsson H-E, Olin H. Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns. Sci Rep. 2018;8:10408. 10.1038/s41598-018-28684-4.Google Scholar
  41. 41.
    Yorov KE, Grigorieva AV, Sidorov AV, Polyakov AY, Sukhorukova IV, Shtansky DV, et al. Inkjet printing of silver rainbow colloids for SERS chips with polychromatic sensitivity. RSC Adv. 2016;6:15535–40.  https://doi.org/10.1039/C5RA25907J.CrossRefGoogle Scholar
  42. 42.
    Encina ER, Coronado EA. Plasmon coupling in silver nanosphere pairs. J Phys Chem C. 2010;114:3918–23.  https://doi.org/10.1021/jp912096v.CrossRefGoogle Scholar
  43. 43.
    Zopf D, Jatschka J, Dathe A, Jahr N, Fritzsche W, Stranik O. Hyperspectral imaging of plasmon resonances in metallic nanoparticles. Biosens Bioelectron. 2016;81:287–93.  https://doi.org/10.1016/j.bios.2016.03.001.CrossRefGoogle Scholar
  44. 44.
    Fang Y, Hoh JH. Surface-directed DNA condensation in the absence of soluble multivalent cations. Nucleic Acids Res. 1998;26:588–93.  https://doi.org/10.1093/nar/26.2.588.CrossRefGoogle Scholar
  45. 45.
    Curry A, Nusz G, Chilkoti A, Wax A. Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy. Opt Express. 2005;13:2668–77.CrossRefGoogle Scholar
  46. 46.
    Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972;6:4370–9.  https://doi.org/10.1103/PhysRevB.6.4370.CrossRefGoogle Scholar
  47. 47.
    Bingham JM, Willets KA, Shah NC, Andrews DQ, Van Duyne RP. Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J Phys Chem C 2009;113:16839–16842.  https://doi.org/10.1021/jp907377h.
  48. 48.
    Kralchevsky PA, Denkov ND. Capillary forces and structuring in layers of colloid particles. Curr Opin Colloid Interface Sci. 2001;6:383–401.CrossRefGoogle Scholar
  49. 49.
    Dahlin AB, Tegenfeldt JO, Höök F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem. 2006;78:4416–23.  https://doi.org/10.1021/ac0601967.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance - Leibniz Health TechnologiesJenaGermany
  2. 2.Asclepion Laser TechnologiesJenaGermany
  3. 3.Jena University HospitalFriedrich-Schiller-UniversityJenaGermany

Personalised recommendations