Advertisement

Multicolor bioluminescence resonance energy transfer assay for quantification of global DNA methylation

  • Yuji Baba
  • Kaho Yamamoto
  • Wataru YoshidaEmail author
Research Paper
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

Abnormal DNA methylations such as hypermethylation on tumor suppressor genes and global hypomethylation have been recognized as hallmarks of cancer. Previously, we reported a bioluminescence resonance energy transfer (BRET)-based global DNA methylation level assay using a methyl-CpG-binding domain-fused firefly luciferase (MBD-Fluc) and unmethylated CpG-binding domain-fused firefly luciferase (CXXC-Fluc). The BRET signal between MBD-Fluc and BOBO-3 DNA intercalating dye depends on the methylated CpG contents, whereas the BRET signal between CXXC-Fluc and BOBO-3 depends on the unmethylated CpG contents. Therefore, the global DNA methylation level can be quantified using the BRET assay. However, these assays must be performed separately, because the same luciferase fuses to both MBD and CXXC. In this study, we developed a one-step quantification assay of global DNA methylation based on a multicolor BRET assay using MBD-Fluc and CXXC-fused Oplophorus luciferase (CXXC-Oluc). We demonstrated that MBD-Fluc and CXXC-Oluc simultaneously excite BOBO-3 and BOBO-1 DNA intercalating dyes on genomic DNA, respectively. Moreover, the BRET signals produced from MBD-Fluc and CXXC-Oluc depended on the methylation status of the CpG contents. These results demonstrate that global DNA methylation can be quantified by this multicolor BRET assay in a single tube.

Graphical abstract

Keywords

Global DNA methylation Multicolor bioluminescence resonance energy transfer Methyl-CpG-binding domain Unmethylated CpG-binding domain Luciferase 

Notes

Funding information

This work was supported by the Japan Foundation for Applied Enzymology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_1583_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1890 kb)

References

  1. 1.
    Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204–20.CrossRefGoogle Scholar
  2. 2.
    Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet. 2009;10:805–11.CrossRefGoogle Scholar
  3. 3.
    Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19:81–92.CrossRefGoogle Scholar
  4. 4.
    Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A. Specific gene hypomethylation and cancer: new insights into coding region feature trends. Bioinformation. 2009;3:340–3.CrossRefGoogle Scholar
  5. 5.
    Taby R, Issa JP. Cancer epigenetics. CA Cancer J Clin. 2010;60:376–92.CrossRefGoogle Scholar
  6. 6.
    Torano EG, Petrus S, Fernandez AF, Fraga MF. Global DNA hypomethylation in cancer: review of validated methods and clinical significance. Clin Chem Lab Med. 2012;50:1733–42.CrossRefGoogle Scholar
  7. 7.
    Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300:455.CrossRefGoogle Scholar
  8. 8.
    Cravo M, Pinto R, Fidalgo P, Chaves P, Gloria L, Nobre-Leitao C, et al. Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut. 1996;39:434–8.CrossRefGoogle Scholar
  9. 9.
    Mikeska T, Craig JM. DNA methylation biomarkers: cancer and beyond. Genes. 2014;5:821–64.CrossRefGoogle Scholar
  10. 10.
    Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L. Cancer epigenetics: moving forward. PLoS Genet. 2018;14:e1007362.CrossRefGoogle Scholar
  11. 11.
    Kuo KC, McCune RA, Gehrke CW, Midgett R, Ehrlich M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 1980;8:4763–76.CrossRefGoogle Scholar
  12. 12.
    Armstrong KM, Bermingham EN, Bassett SA, Treloar BP, Roy NC, Barnett MP. Global DNA methylation measurement by HPLC using low amounts of DNA. Biotechnol J. 2011;6:113–7.CrossRefGoogle Scholar
  13. 13.
    Wang X, Suo Y, Yin R, Shen H, Wang H. Ultra-performance liquid chromatography/tandem mass spectrometry for accurate quantification of global DNA methylation in human sperms. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879:1647–52.CrossRefGoogle Scholar
  14. 14.
    Schulz WA, Steinhoff C, Florl AR. Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol. 2006;310:211–50.Google Scholar
  15. 15.
    Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997;25:2532–4.CrossRefGoogle Scholar
  16. 16.
    Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004;32:e38.CrossRefGoogle Scholar
  17. 17.
    Kim JS, Chung WC, Lee KM, Paik CN, Lee KS, Kim HJ, et al. Association between genetic instability and Helicobacter pylori infection in gastric epithelial dysplasia. Gastroenterol Res Pract. 2012;2012:360929.Google Scholar
  18. 18.
    Yoshida W, Baba Y, Karube I. Global DNA methylation detection system using MBD-fused luciferase based on bioluminescence resonance energy transfer assay. Anal Chem. 2016;88:9264–8.CrossRefGoogle Scholar
  19. 19.
    Yoshida W, Baba Y, Banzawa K, Karube I. A quantitative homogeneous assay for global DNA methylation levels using CpG-binding domain- and methyl-CpG-binding domain-fused luciferase. Anal Chim Acta. 2017;990:168–73.CrossRefGoogle Scholar
  20. 20.
    Baba Y, Karube I, Yoshida W. Global DNA methylation level monitoring by methyl-CpG binding domain-fused luciferase. Anal Lett. 2018.  https://doi.org/10.1080/00032719.2018.1494739.
  21. 21.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol. 2012;7:1848–57.CrossRefGoogle Scholar
  22. 22.
    Inouye S, Sato J, Sahara-Miura Y, Yoshida S, Kurakata H, Hosoya T. C6-deoxy coelenterazine analogues as an efficient substrate for glow luminescence reaction of nanoKAZ: the mutated catalytic 19 kDa component of Oplophorus luciferase. Biochem Biophys Res Commun. 2013;437:23–8.CrossRefGoogle Scholar
  23. 23.
    Loening AM, Wu AM, Gambhir SS. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods. 2007;4:641–3.CrossRefGoogle Scholar
  24. 24.
    Taka N, Karube I, Yoshida W. Direct detection of hemimethylated DNA by SRA-fused luciferase based on bioluminescence resonance energy transfer. Anal Lett. 2018.  https://doi.org/10.1080/00032719.2018.1533022.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of BionicsTokyo University of TechnologyHachiojiJapan
  2. 2.School of Bioscience and BiotechnologyTokyo University of TechnologyHachiojiJapan

Personalised recommendations