Advertisement

Delineating the tumor margin with intraoperative surface-enhanced Raman spectroscopy

  • Chunhuan Jiang
  • Ying Wang
  • Wei Song
  • Lehui LuEmail author
Review
  • 46 Downloads
Part of the following topical collections:
  1. New Insights into Analytical Science in China

Abstract

The failure of complete tumor resection during cancer surgery is a leading cause of lethal recurrence and metastasis. However, achieving accurate delineation of tumor margins intraoperatively remains extremely difficult because the infiltrated nature of a tumor usually gives an obscure margin and spreading microtumors. Recent studies show that surface-enhanced Raman scattering (SERS) has the potential to depict precisely the actual tumor extent with high sensitivity, specificity, and spatial resolution; thus providing a promising platform to improve the therapeutic efficiency. In this review, we discuss the recent progress in the use of SERS spectroscopy for intraoperative image-guided resection. We highlight key successes in the development of SERS tags and give insights into the design mechanism of rational SERS tags. We also discuss how to improve the performance of intraoperative navigation based on SERS and explore the challenges and future opportunities for the development of a more effective SERS-based platform.

Graphical abstract

Keywords

Surface-enhanced Raman scattering (SERS) Tumor resection Intraoperative navigation SERS tags Accurate delineation 

Notes

Funding information

This study received financial support from the National Natural Science Foundation of China (No. 21703230, 21635007, 21721003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Sanai N, Berger MS. Surgical oncology for gliomas: the state of the art. Nat Rev Clin Oncol. 2017;15:112–25.Google Scholar
  2. 2.
    Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M, Venneti S, et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Transl Med. 2015;7(309):309ra163.Google Scholar
  3. 3.
    Zhang J, Rector J, Lin JQ, Young JH, Sans M, Katta N, et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med. 2017;9(406):eaan3968.Google Scholar
  4. 4.
    van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17:1315–20.Google Scholar
  5. 5.
    Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18(5):829–34.Google Scholar
  6. 6.
    Lukianova-Hleb EY, Kim Y-S, Belatsarkouski I, Gillenwater AM, O'Neill BE, Lapotko DO. Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles. Nat Nanotechnol. 2016;11:525–32.Google Scholar
  7. 7.
    Petrecca K, Guiot M-C, Panet-Raymond V, Souhami L. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J Neuro-Oncol. 2013;111(1):19–23.Google Scholar
  8. 8.
    Wang P, Fan Y, Lu L, Liu L, Fan L, Zhao M, et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat Commun. 2018;9:2898.Google Scholar
  9. 9.
    Harmsen S, Teraphongphom N, Tweedle MF, Basilion JP, Rosenthal EL. Optical surgical navigation for precision in tumor resections. Mol Imaging Biol. 2017;19(3):357–62.Google Scholar
  10. 10.
    Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med. 2015;7(271):271ra7.Google Scholar
  11. 11.
    Samanta A, Maiti KK, Soh K-S, Liao X, Vendrell M, Dinish US, et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew Chem Int Ed. 2011;50(27):6089–92.Google Scholar
  12. 12.
    Harmsen S, Bedics MA, Wall MA, Huang R, Detty MR, Kircher MF. Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity. Nat Commun. 2015;6:6570.Google Scholar
  13. 13.
    Mulvaney SP, Musick MD, Keating CD, Natan MJ. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir. 2003;19(11):4784–90.Google Scholar
  14. 14.
    Wang Y, Yan B, Chen L. SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev. 2013;113(3):1391–428.Google Scholar
  15. 15.
    Lane LA, Qian X, Nie S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev. 2015;115(19):10489–529.Google Scholar
  16. 16.
    Cialla-May D, Zheng XS, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev. 2017;46(13):3945–61.Google Scholar
  17. 17.
    Liu Y, Ashton JR, Moding EJ, Yuan H, Register JK, Fales AM, et al. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 2015;5(9):946–60.Google Scholar
  18. 18.
    Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD, et al. Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem. 2010;82(21):9058–65.Google Scholar
  19. 19.
    Bohndiek SE, Wagadarikar A, Zavaleta CL, Van de Sompel D, Garai E, Jokerst JV, et al. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc Natl Acad Sci U S A. 2013;110(30):12408–13.Google Scholar
  20. 20.
    Zavaleta CL, Garai E, Liu JTC, Sensarn S, Mandella MJ, Van de Sompel D, et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci U S A. 2013;110(25):E2288–97.Google Scholar
  21. 21.
    Garai E, Sensarn S, Zavaleta CL, Loewke NO, Rogalla S, Mandella MJ, et al. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS One. 2015;10(4):e0123185.Google Scholar
  22. 22.
    Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2.Google Scholar
  23. 23.
    Laing S, Jamieson LE, Faulds K, Graham D. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat Rev Chem. 2017;1:0060.Google Scholar
  24. 24.
    Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26(2):163–6.Google Scholar
  25. 25.
    Jeanmaire DL, Van Duyne RP. Surface raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem. 1977;84(1):1–20.Google Scholar
  26. 26.
    Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med. 2015;7(274):274ra19.Google Scholar
  27. 27.
    Qiu Y, Zhang Y, Li M, Chen G, Fan C, Cui K, et al. Intraoperative detection and eradication of residual microtumors with gap-enhanced Raman tags. ACS Nano. 2018;12(8):7974–85.Google Scholar
  28. 28.
    Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci U S A. 2009;106(32):13511–6.Google Scholar
  29. 29.
    Kircher MF. How can we apply the use of surface-enhanced Raman scattering nanoparticles in tumor imaging? Nanomedicine. 2017;12(3):171–4.Google Scholar
  30. 30.
    Oseledchyk A, Andreou C, Wall MA, Kircher MF. Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano. 2017;11(2):1488–97.Google Scholar
  31. 31.
    von Maltzahn G, Centrone A, Park J-H, Ramanathan R, Sailor MJ, Hatton TA, et al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater. 2009;21(31):3175–80.Google Scholar
  32. 32.
    Zhang Y, Qian J, Wang D, Wang Y, He S. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew Chem Int Ed. 2013;52(4):1148–51.Google Scholar
  33. 33.
    Schwartzberg AM, Olson TY, Talley CE, Zhang JZ. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B. 2006;110(40):19935–44.Google Scholar
  34. 34.
    Zhang Y, Liu Z, Thackray BD, Bao Z, Yin X, Shi F, et al. Intraoperative Raman-guided chemo-photothermal synergistic therapy of advanced disseminated ovarian cancers. Small. 2018.  https://doi.org/10.1002/smll.201801022.
  35. 35.
    Zhou J, Xiong Q, Ma J, Ren J, Messersmith PB, Chen P, et al. Polydopamine-enabled approach toward tailored plasmonic nanogapped nanoparticles: from nanogap engineering to multifunctionality. ACS Nano. 2016;10(12):11066–75.Google Scholar
  36. 36.
    Song J, Zhou J, Duan H. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J Am Chem Soc. 2012;134(32):13458–69.Google Scholar
  37. 37.
    Qian X, Li J, Nie S. Stimuli-responsive SERS nanoparticles: conformational control of plasmonic coupling and surface Raman enhancement. J Am Chem Soc. 2009;131(22):7540–1.Google Scholar
  38. 38.
    Kang H, Jeong S, Jo A, Chang H, Yang J-K, Jeong C, et al. Ultrasensitive NIR-SERRS probes with multiplexed ratiometric quantification for in vivo antibody leads validation. Adv Healthc Mater. 2018;7(4):1700870.Google Scholar
  39. 39.
    Gandra N, Singamaneni S. “Clicked” plasmonic core–satellites: covalently assembled gold nanoparticles. Chem Commun. 2012;48(94):11540–2.Google Scholar
  40. 40.
    Maiti KK, Dinish US, Fu CY, Lee JJ, Soh KS, Yun SW, et al. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens Bioelectron. 2010;26(2):398–403.Google Scholar
  41. 41.
    Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26(1):83–90.Google Scholar
  42. 42.
    Jiang C, Wang Y, Wang J, Song W, Lu L. Achieving ultrasensitive in vivo detection of bone crack with polydopamine-capsulated surface-enhanced Raman nanoparticle. Biomaterials. 2017;114:54–61.Google Scholar
  43. 43.
    Maiti KK, Samanta A, Vendrell M, Soh KS, Olivo M, Chang YT. Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chem Commun. 2011;47(12):3514–6.Google Scholar
  44. 44.
    Hu B, Kong F, Gao X, Jiang L, Li X, Gao W, et al. Avoiding thiol compound interference: a nanoplatform based on high-fidelity Au–Se bonds for biological applications. Angew Chem Int Ed. 2018;57(19):5306–9.Google Scholar
  45. 45.
    Iacono P, Karabeber H, Kircher MF. A “Schizophotonic” all-in-one nanoparticle coating for multiplexed SE(R)RS biomedical imaging. Angew Chem Int Ed. 2014;53(44):11756–61.Google Scholar
  46. 46.
    Zhang Y, Walkenfort B, Yoon JH, Schlücker S, Xie W. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids. Phys Chem Chem Phys. 2015;17(33):21120–6.Google Scholar
  47. 47.
    Darby BL, Le Ru EC. Competition between molecular adsorption and diffusion: dramatic consequences for SERS in colloidal solutions. J Am Chem Soc. 2014;136(31):10965–73.Google Scholar
  48. 48.
    Zhang Y, Wang Z, Wu L, Zong S, Yun B, Cui Y. Combining multiplex SERS nanovectors and multivariate analysis for in situ profiling of circulating tumor cell phenotype using a microfluidic chip. Small. 2018;14(20):1704433.Google Scholar
  49. 49.
    Jokerst JV, Miao Z, Zavaleta C, Cheng Z, Gambhir SS. Affibody-functionalized gold–silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small. 2011;7(5):625–33.Google Scholar
  50. 50.
    Huang R, Harmsen S, Samii JM, Karabeber H, Pitter KL, Holland EC, et al. High precision imaging of microscopic spread of glioblastoma with a targeted ultrasensitive serrs molecular imaging probe. Theranostics. 2016;6(8):1075–84.Google Scholar
  51. 51.
    Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed. 2014;53(46):12320–64.Google Scholar
  52. 52.
    Song J, Pu L, Zhou J, Duan B, Duan H. Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano. 2013;7(11):9947–60.Google Scholar
  53. 53.
    Wang YW, Khan A, Som M, Wang D, Chen Y, Leigh SY, et al. Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. Technology. 2014;02(02):118–32.Google Scholar
  54. 54.
    Wang YW, Khan A, Leigh SY, Wang D, Chen Y, Meza D, et al. Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus. Biomed Opt Express. 2014;5(9):2883–95.Google Scholar
  55. 55.
    Wang YW, Doerksen JD, Kang S, Walsh D, Yang Q, Hong D, et al. Multiplexed molecular imaging of fresh tissue surfaces enabled by convection-enhanced topical staining with SERS-coded nanoparticles. Small. 2016;12(40):5612–21.Google Scholar
  56. 56.
    Kang S, Wang Y, Reder NP, Liu JT. Multiplexed molecular imaging of biomarker-targeted SERS nanoparticles on fresh tissue specimens with channel-compressed spectrometry. PLoS One. 2016;11(9):e0163473.Google Scholar
  57. 57.
    Karabeber H, Huang R, Iacono P, Samii JM, Pitter K, Holland EC, et al. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held raman scanner. ACS Nano. 2014;8(10):9755–66.Google Scholar
  58. 58.
    Stone N, Kerssens M, Lloyd GR, Faulds K, Graham D, Matousek P. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging - the next dimension. Chem Sci. 2011;2(4):776–80.Google Scholar
  59. 59.
    Neuschmelting V, Harmsen S, Beziere N, Lockau H, Hsu HT, Huang R, et al. Dual-modality surface-enhanced resonance Raman scattering and multispectral optoacoustic tomography nanoparticle approach for brain tumor delineation. Small. 2018;14(23):e1800740.Google Scholar
  60. 60.
    Amendola V, Scaramuzza S, Litti L, Meneghetti M, Zuccolotto G, Rosato A, et al. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small. 2014;10(12):2476–86.Google Scholar
  61. 61.
    Qian J, Jiang L, Cai F, Wang D, He S. Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging. Biomaterials. 2011;32(6):1601–10.Google Scholar
  62. 62.
    Wall MA, Shaffer TM, Harmsen S, Tschaharganeh D-F, Huang C-H, Lowe SW, et al. Chelator-free radiolabeling of SERRS nanoparticles for whole-body PET and intraoperative Raman imaging. Theranostics. 2017;7(12):3068–77.Google Scholar
  63. 63.
    Gao Y, Li Y, Chen J, Zhu S, Liu X, Zhou L, et al. Multifunctional gold nanostar-based nanocomposite: synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials. 2015;60(0):31–41.Google Scholar
  64. 64.
    Thakor AS, Paulmurugan R, Kempen P, Zavaleta C, Sinclair R, Massoud TF, et al. Oxidative stress mediates the effects of Raman-active gold nanoparticles in human cells. Small. 2011;7(1):126–36.Google Scholar
  65. 65.
    Zavaleta CL, Hartman KB, Miao Z, James ML, Kempen P, Thakor AS, et al. Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging. Small. 2011;7(15):2232–40.Google Scholar
  66. 66.
    Thakor AS, Luong R, Paulmurugan R, Lin FI, Kempen P, Zavaleta C, et al. The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci Transl Med. 2011;3(79):79ra33.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
  3. 3.State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchunChina

Personalised recommendations