In vitro metabolic fate of nine LSD-based new psychoactive substances and their analytical detectability in different urinary screening procedures

  • Lea Wagmann
  • Lilian H. J. Richter
  • Tobias Kehl
  • Franziska Wack
  • Madeleine Pettersson Bergstrand
  • Simon D. Brandt
  • Alexander Stratford
  • Hans H. Maurer
  • Markus R. MeyerEmail author
Research Paper
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry


The market of new psychoactive substances (NPS) is characterized by a high turnover and thus provides several challenges for analytical toxicology. The analysis of urine samples often requires detailed knowledge about metabolism given that parent compounds either may be present only in small amounts or may not even be excreted. Hence, knowledge of the metabolism of NPS is a prerequisite for the development of reliable analytical methods. The main aim of this work was to elucidate for the first time the pooled human liver S9 fraction metabolism of the nine d-lysergic acid diethylamide (LSD) derivatives 1-acetyl-LSD (ALD-52), 1-propionyl-LSD (1P-LSD), 1-butyryl-LSD (1B-LSD), N6-ethyl-nor-LSD (ETH-LAD), 1-propionyl-N6-ethyl-nor-LSD (1P-ETH-LAD), N6-allyl-nor-LSD (AL-LAD), N-ethyl-N-cyclopropyl lysergamide (ECPLA), (2′S,4′S)-lysergic acid 2,4-dimethylazetidide (LSZ), and lysergic acid morpholide (LSM-775) by means of liquid chromatography coupled to high-resolution tandem mass spectrometry. Identification of the monooxygenase enzymes involved in the initial metabolic steps was performed using recombinant human enzymes and their contribution confirmed by inhibition experiments. Overall, N-dealkylation and hydroxylation, as well as combinations of these steps predominantly catalyzed by CYP1A2 and CYP3A4, were found. For ALD-52, 1P-LSD, and 1B-LSD, deacylation to LSD was observed. The obtained mass spectral data of all metabolites are essential for reliable analytical detection particularly in urinalysis and for differentiation of the LSD-like compounds as biotransformations also led to structurally identical metabolites. However, in urine of rats after the administration of expected recreational doses and using standard urine screening approaches, parent drugs or metabolites could not be detected.


Lysergamides NPS Metabolism Urinalysis LC-HRMS/MS 



The authors would like to thank Armin A. Weber and the Stiftelsen för Klinisk farmakologi & farmakoterapi for support.

Compliance with ethical standards

The studies have been approved by an ethics committee (Landesamt für Verbraucherschutz, Saarbrücken, Germany).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1558_MOESM1_ESM.pdf (2.8 mb)
ESM 1 (PDF 2917 kb)


  1. 1.
    Stevens J. Storming heaven: LSD and the American dream. New York: Grove Press; 1987.Google Scholar
  2. 2.
    Hoffman AJ, Nichols DE. Synthesis and LSD-like discriminative stimulus properties in a series of N(6)-alkyl norlysergic acid N,N-diethylamide derivatives. J Med Chem. 1985;28(9):1252–5.CrossRefGoogle Scholar
  3. 3.
    Oberlender R, Pfaff RC, Johnson MP, Huang XM, Nichols DE. Stereoselective LSD-like activity in d-lysergic acid amides of (R)- and (S)-2-aminobutane. J Med Chem. 1992;35(2):203–11.CrossRefGoogle Scholar
  4. 4.
    Huang X, Marona-Lewicka D, Pfaff RC, Nichols DE. Drug discrimination and receptor binding studies of N-isopropyl lysergamide derivatives. Pharmacol Biochem Behav. 1994;47(3):667–73.CrossRefGoogle Scholar
  5. 5.
    Monte AP, Marona-Lewicka D, Kanthasamy A, Sanders-Bush E, Nichols DE. Stereoselective LSD-like activity in a series of d-lysergic acid amides of (R)- and (S)-2-aminoalkanes. J Med Chem. 1995;38(6):958–66.CrossRefGoogle Scholar
  6. 6.
    Nichols DE, Frescas S, Marona-Lewicka D, Kurrasch-Orbaugh DM. Lysergamides of isomeric 2,4-dimethylazetidines map the binding orientation of the diethylamide moiety in the potent hallucinogenic agent N,N-diethyllysergamide (LSD). J Med Chem. 2002;45(19):4344–9.CrossRefGoogle Scholar
  7. 7.
    Shulgin A, Shulgin A. Tihkal: the continuation. Berkeley: Transform Press; 1997.Google Scholar
  8. 8.
    Pfaff RC, Huang X, Marona-Lewicka D, Oberlender R, Nichols DE. Lysergamides revisited. NIDA Res Monogr. 1994;146:52–73.PubMedGoogle Scholar
  9. 9.
    Nichols DE. LSD and its lysergamide cousins. Heffter Rev Psychedelic Res. 2001;2:80–7.Google Scholar
  10. 10.
    Nichols DE. Psychedelics. Pharmacol Rev. 2016;68(2):264–355.CrossRefGoogle Scholar
  11. 11.
    Nichols DE. Dark classics in chemical neuroscience: lysergic acid diethylamide (LSD). ACS Chem Neurosci. 2018;9(10):2331–43.CrossRefGoogle Scholar
  12. 12.
    Liechti ME. Modern clinical research on LSD. Neuropsychopharmacology. 2017;42(11):2114–27.CrossRefGoogle Scholar
  13. 13.
    Brandt SD, Kavanagh PV, Westphal F, Stratford A, Elliott SP, Hoang K, et al. Return of the lysergamides. Part I: analytical and behavioural characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD). Drug Test Anal. 2016;8(9):891–902.CrossRefGoogle Scholar
  14. 14.
    Brandt SD, Kavanagh PV, Westphal F, Elliott SP, Wallach J, Stratford A, et al. Return of the lysergamides. Part III: analytical characterization of N(6) -ethyl-6-norlysergic acid diethylamide (ETH-LAD) and 1-propionyl ETH-LAD (1P-ETH-LAD). Drug Test Anal. 2017;9(10):1641–9.CrossRefGoogle Scholar
  15. 15.
    Brandt SD, Kavanagh PV, Westphal F, Elliott SP, Wallach J, Colestock T, et al. Return of the lysergamides. Part II: analytical and behavioural characterization of N(6) -allyl-6-norlysergic acid diethylamide (AL-LAD) and (2'S,4'S)-lysergic acid 2,4-dimethylazetidide (LSZ). Drug Test Anal. 2017;9(1):38–50.CrossRefGoogle Scholar
  16. 16.
    Halberstadt AL, Klein LM, Chatha M, Valenzuela LB, Stratford A, Wallach J, et al. Pharmacological characterization of the LSD analog N-ethyl-N-cyclopropyl lysergamide (ECPLA). Psychopharmacology. 2018.
  17. 17.
    Brandt SD, Kavanagh PV, Twamley B, Westphal F, Elliott SP, Wallach J et al. Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSM-775). Drug Test Anal. 2018;10(2):310–22.Google Scholar
  18. 18.
    EMCDDA. European drug report 2017: trends and developments. Publications of of the European Union 2017.Google Scholar
  19. 19.
    Canezin J, Cailleux A, Turcant A, Le Bouil A, Harry P, Allain P. Determination of LSD and its metabolites in human biological fluids by high-performance liquid chromatography with electrospray tandem mass spectrometry. J Chromatogr B Biomed Sci Appl. 2001;765(1):15–27.CrossRefGoogle Scholar
  20. 20.
    Dolder PC, Liechti ME, Rentsch KM. Development and validation of a rapid turboflow LC-MS/MS method for the quantification of LSD and 2-oxo-3-hydroxy LSD in serum and urine samples of emergency toxicological cases. Anal Bioanal Chem. 2015;407(6):1577–84.CrossRefGoogle Scholar
  21. 21.
    Dolder PC, Schmid Y, Haschke M, Rentsch KM, Liechti ME. Pharmacokinetics and Concentration-Effect Relationship of Oral LSD in Humans. Int J Neuropsychopharmacol. 2015;19(1).Google Scholar
  22. 22.
    Diao X, Huestis MA. Approaches, challenges, and advances in metabolism of new synthetic cannabinoids and identification of optimal urinary marker metabolites. Clin Pharmacol Ther. 2017;101(2):239–53.CrossRefGoogle Scholar
  23. 23.
    Welter-Luedeke J, Maurer HH. New psychoactive substances: chemistry, pharmacology, metabolism, and detectability of amphetamine derivatives with modified ring systems. Ther Drug Monit. 2016;38(1):4–11.CrossRefGoogle Scholar
  24. 24.
    Meyer MR. New psychoactive substances: an overview on recent publications on their toxicodynamics and toxicokinetics. Arch Toxicol. 2016;90(10):2421–44.CrossRefGoogle Scholar
  25. 25.
    Meyer MR. Toxicokinetics of NPS: update 2017. Handb Exp Pharmacol. 2018.
  26. 26.
    Mogler L, Wilde M, Huppertz LM, Weinfurtner G, Franz F, Auwarter V. Phase I metabolism of the recently emerged synthetic cannabinoid CUMYL-PEGACLONE and detection in human urine samples. Drug Test Anal. 2018;10(5):886-91.Google Scholar
  27. 27.
    Watanabe S, Vikingsson S, Roman M, Green H, Kronstrand R, Wohlfarth A. In vitro and in vivo metabolite identification studies for the new synthetic opioids acetylfentanyl, acrylfentanyl, furanylfentanyl, and 4-fluoro-isobutyrylfentanyl. AAPS J. 2017;19(4):1102–22.CrossRefGoogle Scholar
  28. 28.
    Welter J, Meyer MR, Wolf EU, Weinmann W, Kavanagh P, Maurer HH. 2-Methiopropamine, a thiophene analogue of methamphetamine: studies on its metabolism and detectability in the rat and human using GC-MS and LC-(HR)-MS techniques. Anal Bioanal Chem. 2013;405(10):3125–35.CrossRefGoogle Scholar
  29. 29.
    Richter LHJ, Flockerzi V, Maurer HH, Meyer MR. Pooled human liver preparations, HepaRG, or HepG2 cell lines for metabolism studies of new psychoactive substances? A study using MDMA, MDBD, butylone, MDPPP, MDPV, MDPB, 5-MAPB, and 5-API as examples. J Pharm Biomed Anal. 2017;143:32–42.CrossRefGoogle Scholar
  30. 30.
    Chauret N, Gauthier A, Nicoll-Griffith DA. Effect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes. Drug Metab Dispos. 1998;26(1):1–4.PubMedGoogle Scholar
  31. 31.
    Wagmann L, Meyer MR, Maurer HH. What is the contribution of human FMO3 in the N-oxygenation of selected therapeutic drugs and drugs of abuse? Toxicol Lett. 2016;258:55–70.CrossRefGoogle Scholar
  32. 32.
    Meyer GM, Meyer MR, Wink CS, Zapp J, Maurer HH. Studies on the in vivo contribution of human cytochrome P450s to the hepatic metabolism of glaucine, a new drug of abuse. Biochem Pharmacol. 2013;86(10):1497–506.CrossRefGoogle Scholar
  33. 33.
    Wagmann L, Brandt SD, Kavanagh PV, Maurer HH, Meyer MR. In vitro monoamine oxidase inhibition potential of alpha-methyltryptamine analog new psychoactive substances for assessing possible toxic risks. Toxicol Lett. 2017;272:84–93.CrossRefGoogle Scholar
  34. 34.
    Welter J, Kavanagh P, Meyer MR, Maurer HH. Benzofuran analogues of amphetamine and methamphetamine: studies on the metabolism and toxicological analysis of 5-APB and 5-MAPB in urine and plasma using GC-MS and LC-(HR)-MS(n) techniques. Anal Bioanal Chem. 2015;407(5):1371–88.CrossRefGoogle Scholar
  35. 35.
    Helfer AG, Michely JA, Weber AA, Meyer MR, Maurer HH. Orbitrap technology for comprehensive metabolite-based liquid chromatographic-high resolution-tandem mass spectrometric urine drug screening—exemplified for cardiovascular drugs. Anal Chim Acta. 2015;891:221–33.CrossRefGoogle Scholar
  36. 36.
    Caspar AT, Westphal F, Meyer MR, Maurer HH. LC-high resolution-MS/MS for identification of 69 metabolites of the new psychoactive substance 1-(4-ethylphenyl-)-N-[(2-methoxyphenyl)methyl] propane-2-amine (4-EA-NBOMe) in rat urine and human liver S9 incubates and comparison of its screening power with further MS techniques. Anal Bioanal Chem. 2018;410(3):897–912.CrossRefGoogle Scholar
  37. 37.
    Wissenbach DK, Meyer MR, Remane D, Philipp AA, Weber AA, Maurer HH. Drugs of abuse screening in urine as part of a metabolite-based LC-MSn screening concept. Anal Bioanal Chem. 2011;400(10):3481–9.CrossRefGoogle Scholar
  38. 38.
    Meyer MR, Lindauer C, Welter J, Maurer HH. Dimethocaine, a synthetic cocaine analogue: studies on its in-vivo metabolism and its detectability in urine by means of a rat model and liquid chromatography-linear ion-trap (high-resolution) mass spectrometry. Anal Bioanal Chem. 2014;406(7):1845–54.CrossRefGoogle Scholar
  39. 39.
    Maurer HH, Pfleger K, Weber AA. Mass spectral data of drugs, poisons, pesticides, pollutants and their metabolites. Wiley-VCH: Weinheim; 2016.Google Scholar
  40. 40.
    Klette KL, Anderson CJ, Poch GK, Nimrod AC, ElSohly MA. Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes. J Anal Toxicol. 2000;24(7):550–6.CrossRefGoogle Scholar
  41. 41.
    Poch GK, Klette KL, Hallare DA, Manglicmot MG, Czarny RJ, McWhorter LK, et al. Detection of metabolites of lysergic acid diethylamide (LSD) in human urine specimens: 2-oxo-3-hydroxy-LSD, a prevalent metabolite of LSD. J Chromatogr B Biomed Sci Appl. 1999;724(1):23–33.CrossRefGoogle Scholar
  42. 42.
    Steuer AE, Poetzsch M, Stock L, Eisenbeiss L, Schmid Y, Liechti ME, et al. Development and validation of an ultra-fast and sensitive microflow liquid chromatography-tandem mass spectrometry (MFLC-MS/MS) method for quantification of LSD and its metabolites in plasma and application to a controlled LSD administration study in humans. Drug Test Anal. 2017;9(5):788–97.CrossRefGoogle Scholar
  43. 43.
    Dolder PC, Liechti ME, Rentsch KM. Development and validation of an LC-MS/MS method to quantify lysergic acid diethylamide (LSD), iso-LSD, 2-oxo-3-hydroxy-LSD, and nor-LSD and identify novel metabolites in plasma samples in a controlled clinical trial. J Clin Lab Anal. 2018;32(2).Google Scholar
  44. 44.
    Favretto D, Frison G, Maietti S, Ferrara SD. LC-ESI-MS/MS on an ion trap for the determination of LSD, iso-LSD, nor-LSD and 2-oxo-3-hydroxy-LSD in blood, urine and vitreous humor. Int J Legal Med. 2007;121(4):259–65.CrossRefGoogle Scholar
  45. 45.
    Jang M, Kim J, Han I, Yang W. Simultaneous determination of LSD and 2-oxo-3-hydroxy LSD in hair and urine by LC-MS/MS and its application to forensic cases. J Pharm Biomed Anal. 2015;115:138–43.CrossRefGoogle Scholar
  46. 46.
    Johansen SS, Jensen JL. Liquid chromatography-tandem mass spectrometry determination of LSD, ISO-LSD, and the main metabolite 2-oxo-3-hydroxy-LSD in forensic samples and application in a forensic case. J Chromatogr B Anal Technol Biomed Life Sci. 2005;825(1):21–8.CrossRefGoogle Scholar
  47. 47.
    Richter LHJ, Maurer HH, Meyer MR. New psychoactive substances: studies on the metabolism of XLR-11, AB-PINACA, FUB-PB-22, 4-methoxy-alpha-PVP, 25-I-NBOMe, and meclonazepam using human liver preparations in comparison to primary human hepatocytes, and human urine. Toxicol Lett. 2017;280:142–50.CrossRefGoogle Scholar
  48. 48.
    Niessen WM, Correa RA. Interpretation of MS-MS mass spectra of drugs and pesticides. Hoboken: Wiley; 2016.Google Scholar
  49. 49.
    Wink CS, Meyer GM, Meyer MR, Maurer HH. Toxicokinetics of lefetamine and derived diphenylethylamine designer drugs—contribution of human cytochrome P450 isozymes to their main phase I metabolic steps. Toxicol Lett. 2015;238(3):39–44.CrossRefGoogle Scholar
  50. 50.
    Koonrungsesomboon N, Khatsri R, Wongchompoo P, Teekachunhatean S. The impact of genetic polymorphisms on CYP1A2 activity in humans: a systematic review and meta-analysis. Pharmacogenomics J. 2018;18(6):760–8.Google Scholar
  51. 51.
    Nichols DE, Grob CS. Is LSD toxic? Forensic Sci Int. 2018;284:141–5.CrossRefGoogle Scholar
  52. 52.
    Passie T, Halpern JH, Stichtenoth DO, Emrich HM, Hintzen A. The pharmacology of lysergic acid diethylamide: a review. CNS Neurosci Ther. 2008;14(4):295–314.CrossRefGoogle Scholar
  53. 53.
    Sharma V, McNeill JH. To scale or not to scale: the principles of dose extrapolation. Br J Pharmacol. 2009;157(6):907–21.CrossRefGoogle Scholar
  54. 54.
    Crews C. Analysis of ergot alkaloids. Toxins (Basel). 2015;7(6):2024–50.CrossRefGoogle Scholar
  55. 55.
    Meyer MR, Schmitt S, Maurer HH. Studies on the metabolism and detectability of the emerging drug of abuse diphenyl-2-pyrrolidinemethanol (D2PM) in rat urine using GC-MS and LC-HR-MS/MS. J Mass Spectrom. 2013;48(2):243–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lea Wagmann
    • 1
  • Lilian H. J. Richter
    • 1
  • Tobias Kehl
    • 1
  • Franziska Wack
    • 1
  • Madeleine Pettersson Bergstrand
    • 1
    • 2
    • 3
  • Simon D. Brandt
    • 4
  • Alexander Stratford
    • 5
  • Hans H. Maurer
    • 1
  • Markus R. Meyer
    • 1
    Email author
  1. 1.Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS)Saarland UniversityHomburgGermany
  2. 2.Department of Laboratory Medicine, Division of Clinical PharmacologyKarolinska InstitutetStockholmSweden
  3. 3.Department of Laboratory Medicine, Division of Clinical ChemistryKarolinska InstitutetStockholmSweden
  4. 4.School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK
  5. 5.Synex Synthetics BVMaastrichtThe Netherlands

Personalised recommendations