Advertisement

Pullulan reduces the non-specific amplification of loop-mediated isothermal amplification (LAMP)

  • Xueqin Gao
  • Bingqi SunEmail author
  • Yifu GuanEmail author
Research Paper
  • 68 Downloads

Abstract

Loop-mediated isothermal amplification (LAMP) has been developed as a versatile method for nucleic acid analysis in many applications. However, non-specific LAMP leading to false-positive outcomes has been observed frequently. To solve this problem, we selected six molecules as the additives for evaluating their effects on the improvement of the LAMP specificity. Experimental results show that bovine serum albumin (BSA) and DL-dithiothreitol (DTT) have negative effects on the LAMP specificity; dimethyl sulfoxide (DMSO), tetramethylene sulfoxide (TMSO), and glycerol could inhibit the non-specific LAMP moderately. Surprisingly, pullulan shows an ability to inhibit the non-specific amplification of LAMP significantly without affecting the sample amplification of LAMP, and this inhibitory effect is concentration dependent. Thus, pullulan could be considered as the most promising additive to improve the amplification specificity in the LAMP-based detection and analysis of nucleic acids.

Keywords

LAMP Specificity Pullulan Additive 

Notes

Funding information

This study received financial support from the National Natural Science Foundation of China (No. 31670821).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1552_MOESM1_ESM.pdf (502 kb)
ESM 1 (PDF 501 kb)

References

  1. 1.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.CrossRefGoogle Scholar
  2. 2.
    Wu D, Kang J, Li B, Sun D. Evaluation of the RT-LAMP and LAMP methods for detection of Mycobacterium tuberculosis. J Clin Lab Anal. 2018;32(4):e22326.  https://doi.org/10.1002/jcla.22326.CrossRefPubMedGoogle Scholar
  3. 3.
    Nakiyingi L, Nakanwagi P, Briggs J, Agaba T, Mubiru F, Mugenyi M, et al. Performance of loop-mediated isothermal amplification assay in the diagnosis of pulmonary tuberculosis in a high prevalence TB/HIV rural setting in Uganda. BMC Infect Dis. 2018;18(1):87.  https://doi.org/10.1186/s12879-018-2992-1. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ou X, Wang S, Dong H, Pang Y, Li Q, Xia H, et al. Multicenter evaluation of a real-time loop-mediated isothermal amplification (RealAmp) test for rapid diagnosis of Mycobacterium tuberculosis. J Microbiol Methods. 2016;129:39–43.CrossRefGoogle Scholar
  5. 5.
    Curtis KA, Morrison D, Rudolph DL, Shankar A, Lsp B, Switzer WM, et al. A multiplexed RT-LAMP assay for detection of group M HIV-1 in plasma or whole blood. J Virol Methods. 2018;255:91–7.CrossRefGoogle Scholar
  6. 6.
    Tian X, Feng J, Wang Y. Direct loop-mediated isothermal amplification assay for on-site detection of Staphylococcus aureus. FEMS Microbiol Lett. 2018;365(11):fny092.  https://doi.org/10.1093/femsle/fny092.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kong C, Wang Y, Fodjo EK, Yang G, Han F, Shen X. Loop-mediated isothermal amplification for visual detection of Vibrio parahaemolyticus using gold nanoparticles. Microchim Acta. 2017;185(1):35.  https://doi.org/10.1007/s00604-017-2594-4. CrossRefGoogle Scholar
  8. 8.
    Domesle KJ, Yang Q, Hammack TS, Ge B. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food. Int J Food Microbiol. 2017;264(0168–1605):63–76.PubMedGoogle Scholar
  9. 9.
    Zou D, Huang S, Lei H, Yang Z, Su Y, He X, et al. Sensitive and rapid detection of the plasmid-encoded colistin-resistance gene mcr-1 in Enterobacteriaceae isolates by loop-mediated isothermal amplification. Front Microbiol. 2017;8:2356.  https://doi.org/10.3389/fmicb.2017.02356.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hanaki K, Sekiguchi J, Shimada K, Sato A, Watari H, Kojima T, et al. Loop-mediated isothermal amplification assays for identification of antiseptic- and methicillin-resistant Staphylococcus aureus. J Microbiol Methods. 2011;84(2):251–4.CrossRefGoogle Scholar
  11. 11.
    Yongkiettrakul S, Kampeera J, Chareanchim W, Rattanajak R, Pornthanakasem W, Kiatpathomchai W, et al. Simple detection of single nucleotide polymorphism in Plasmodium falciparum by SNP-LAMP assay combined with lateral flow dipstick. Parasitol Int. 2017;66(1):964–71.CrossRefGoogle Scholar
  12. 12.
    Minnucci G, Amicarelli G, Salmoiraghi S, Spinelli O, Guinea Montalvo ML, Giussani U, et al. A novel, highly sensitive and rapid allele-specific loop-mediated amplification assay for the detection of the JAK2V617F mutation in chronic myeloproliferative neoplasms. Haematologica. 2012;97(9):1394.CrossRefGoogle Scholar
  13. 13.
    Veigas B, Pedrosa P, Couto I, Viveiros M, Baptista PV. Isothermal DNA amplification coupled to Au-nanoprobes for detection of mutations associated to rifampicin resistance in Mycobacterium tuberculosis. J Nanobiotechnology. 2013;11(1):38.CrossRefGoogle Scholar
  14. 14.
    Hsieh K, Mage PL, Csordas AT, Eisenstein M, Soh HT. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chem Commun (Camb). 2014;50(28):3747–9.  https://doi.org/10.1039/c4cc00540f.CrossRefGoogle Scholar
  15. 15.
    Karthik K, Rathore R, Thomas P, Arun TR, Viswas KN, Dhama K, et al. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination. Methods. 2014;1:137–43.Google Scholar
  16. 16.
    Watts MR, James G, Sultana Y, Ginn AN, Outhred AC, Kong F, et al. A loop-mediated isothermal amplification (LAMP) assay for Strongyloides stercoralis in stool that uses a visual detection method with SYTO-82 fluorescent dye. Am J Trop Med Hyg. 2014;90(2):306–11.CrossRefGoogle Scholar
  17. 17.
    Wang DG, Brewster JD, Paul M, Tomasula PM. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules. 2015;20(4):6048–59.  https://doi.org/10.3390/molecules20046048.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nagai M, Yoshida A, Sato N. Additive effects of bovine serum albumin, dithiothreitol, and glycerol on PCR. IUBMB Life. 1998;44(1):157–63.CrossRefGoogle Scholar
  19. 19.
    Jensen MA, Fukushima M, Davis RW. DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis. PLoS One. 2010;5(6):e11024.  https://doi.org/10.1371/journal.pone.0011024.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Musso M, Bocciardi R, Parodi S, Ravazzolo R, Ceccherini I. Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences. J Mol Diagn. 2006;8(5):544–50.CrossRefGoogle Scholar
  21. 21.
    Farell EM, Alexandre G. Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Res Notes. 2012;5(1):1–8.CrossRefGoogle Scholar
  22. 22.
    Strien J, Sanft J, Mall G. Enhancement of PCR amplification of moderate GC-containing and highly GC-rich DNA sequences. Mol Biotechnol. 2013;54(3):1048–54.  https://doi.org/10.1007/s12033-013-9660-x.CrossRefPubMedGoogle Scholar
  23. 23.
    Mok E, Wee E, Wang Y, Trau M. Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction. Sci Rep. 2016;6:37837.CrossRefGoogle Scholar
  24. 24.
    Tanner NA, Zhang Y, Evans TC Jr. Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. BioTechniques. 2012;53(2):81–9.  https://doi.org/10.2144/0000113902. CrossRefPubMedGoogle Scholar
  25. 25.
    Singh RS, Saini GK, Kennedy JF. Pullulan: Microbial sources, production and applications. Carbohydr Polym. 2008;73(4):515–31.CrossRefGoogle Scholar
  26. 26.
    Prajapati VD, Jani GK, Khanda SM. Pullulan: An exopolysaccharide and its various applications. Carbohydr Polym. 2013;95(1):540–9.CrossRefGoogle Scholar
  27. 27.
    Wang R, Wu J, Zhang F, Wang L, Ji F. On-point detection of GM rice in 20 minutes with pullulan as CPA acceleration additive. Anal Methods. 2014;6(23):9198–201.CrossRefGoogle Scholar
  28. 28.
    Liu M, Hui CY, Zhang Q, Gu J, Kannan B, Jahanshahi-Anbuhi S, et al. Target-induced and equipment-free DNA amplification with a simple paper device. Angew Chem Int Ed Eng. 2016;55(8):2709–13.  https://doi.org/10.1002/anie.201509389.CrossRefGoogle Scholar
  29. 29.
    Wang C, Altieri F, Ferraro A, Giartosio A, Turano C. The effect of polyols on the stability of duplex DNA. Physiol Chem Phys Med NMR. 1993;25(4):273.PubMedGoogle Scholar
  30. 30.
    Obradovic J, Jurisic V, Tosic N, Mrdjanovic J, Perin B, Pavlovic S, et al. Optimization of PCR conditions for amplification of GC-rich EGFR promoter sequence. J Clin Lab Anal. 2013;27(6):487–93.  https://doi.org/10.1002/jcla.21632.CrossRefPubMedGoogle Scholar
  31. 31.
    Chakrabarti R, Schutt CE. The enhancement of PCR amplification by low molecular weight amides. Gene. 2001;274(1):293–8.CrossRefGoogle Scholar
  32. 32.
    Varadaraj K, Skinner DM. Denaturants or cosolvents improve the specificity of PCR amplification of a G + C-rich DNA using genetically engineered DNA polymerases. Gene. 1994;140(1):1–5.CrossRefGoogle Scholar
  33. 33.
    Kreader CA. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol. 1996;62(3):1102–6.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Chang BS, Mahoney RR. Enzyme thermostabilization by bovine serum albumin and other proteins: evidence for hydrophobic interactions. Biotechnol Appl Biochem. 1995;22(2):203–14.PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyChina Medical UniversityShenyangChina
  2. 2.TB Laboratory, Shenyang Chest HospitalShenyangChina

Personalised recommendations