Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 5, pp 1041–1052 | Cite as

An auxiliary matrix for routine analysis of small molecules and biological macromolecules using matrix-assisted laser desorption ionization mass spectrometry

  • Zhangpei Zhu
  • Jiajia Shen
  • Dawei Wang
  • Chong Chen
  • Yangfan Xu
  • Huimin Guo
  • Dian Kang
  • Naoki Hamada
  • Jing Dong
  • Guangji WangEmail author
  • Yan LiangEmail author
Research Paper

Abstract

The great hurdles related with matrix-assisted laser desorption/ionization (MALDI) analysis are inhomogeneous crystallization, poor reproducibility, and low sensitivity. To effectively improve the performance of MALDI mass spectrometry (MS), graphene oxide (GO) was first utilized as an auxiliary matrix of the conventional matrices, including 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydoxycyanocinnamic acid (CHCA), 2,4,6-trihydroxyacetophenone (THAP), and 3,5-dimethoxy-4-hydroxycinnamic acid (SA), for the analysis of small molecules and biological macromolecules on different MALDI MS systems. The results revealed that the DHB-GO composite matrix could provide much superior crystal homogenization, better reproducibility, higher sensitivity, and more excellent linearity for the statins’ tissue imaging on iMScope than the single-use DHB matrix. Moreover, the DHB-GO dramatically improved the spot-to-spot and shot-to-shot reproducibility, crystal homogenization, sensitivity, and linearity of MALDI-TOF MS for statins’ analysis in dried droplet. The capability of THAP on the analysis of lipids, similarly, could be greatly enhanced by the combined use of GO. THAP-GO composite matrix was expected to be widely used in the MALDI MS-based liposome studies. It was also found that CHCA-GO could provide superior analytical performance for peptides. The sensitivity and reproducibility of intact proteins could be greatly improved by SA-GO composite matrix. More importantly, the better reproducibility produced by the composite matrices sufficiently indicated that low concentration (0.1 mg mL−1) of GO almost did not cause contamination to MALDI MS system. Thus, GO was proved to be a versatile auxiliary matrix for the MALDI MS-based routine analysis of small molecules and biological macromolecules.

Graphical abstract

Keywords

Graphene oxide Composite matrix Matrix-assisted laser desorption/ionization mass spectrometry Crystal homogenization iMScope 

Notes

Author contributions

All authors have given approval to the final version of the manuscript.

Funding information

This study was supported by the National Nature Science Foundation (81573559, 81530098), the Nature Science Foundation of Jiangsu Province (BK20171395), and the National Key Special Project of Science and Technology for Innovation Drugs of China (2017ZX09301013).

Compliance with ethical standards

All the animal experiments in the present study were approved by the Ethical Committee of Animal Experiments of China Pharmaceutical University.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1532_MOESM1_ESM.pdf (167 kb)
ESM 1 (PDF 166 kb)

References

  1. 1.
    Wang J, Liu Q, Liang Y, Jiang G. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal Bioanal Chem. 2016;408:2861–73.CrossRefGoogle Scholar
  2. 2.
    Karas M, Hillenkamp F. Laser desorption ionisation of proteins with molecular masses exceeding 10,000 Da. Anal Chem. 1988;60:2299–301.CrossRefGoogle Scholar
  3. 3.
    Lacroix C, Gicquel A, Sendid B, Meyer J, Accoceberry I, François N, et al. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin Microbiol Infect. 2014;20:153–8.CrossRefGoogle Scholar
  4. 4.
    Köhler M, Neff C, Perez C, Brunner C, Pardon E, Steyaert J, et al. Binding specificities of nanobody membrane protein complexes obtained from chemical cross-linking and high-mass MALDI mass spectrometry. Anal Chem. 2018;90:5308–13.CrossRefGoogle Scholar
  5. 5.
    Zhang J, Zheng X, Ni Y. Selective enrichment and MALDI-TOF MS analysis of small molecule compounds with vicinal diols by boric acid-functionalized graphene oxide. J Am Soc Mass Spectrom. 2015;26:1291–8.CrossRefGoogle Scholar
  6. 6.
    O’Rourke MB, Djordjevic SP, Padula MP. The quest for improved reproducibility in MALDI mass spectrometry. Mass Spectrom Rev. 2016;37:217–28.CrossRefGoogle Scholar
  7. 7.
    Shi C, Meng J, Deng C. Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem Commun. 2012;48:2418–120.CrossRefGoogle Scholar
  8. 8.
    Toh-Boyo GM, Wulff SS, Basile F. Comparison of sample preparation methods and evaluation of intra- and intersample reproducibility in bacteria MALDI-MS profiling. Anal Chem. 2012;84:9971–80.CrossRefGoogle Scholar
  9. 9.
    Šedo O, I S, Z Z. Sample preparation methods for MALDI-MS profiling of bacteria. Mass Spectrom Rev. 2011;30:417–34.CrossRefGoogle Scholar
  10. 10.
    Zhao X, Barbersingh J, Shippy SA. MALDI-TOF MS detection of dilute, volume-limited peptide samples with physiological salt levels. Analyst. 2004;129:817–22.CrossRefGoogle Scholar
  11. 11.
    Acland M, Mittal P, Lokman NA, Klinglerhoffmann M, Oehler MK, Hoffmann P. Mass spectrometry analyses of multicellular tumour spheroids. Proteomics Clin Appl. 2018;12:e1700124.CrossRefGoogle Scholar
  12. 12.
    Gerald Stübiger A, Belgacem‡ O. Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal Chem. 2007;79:3206–13.CrossRefGoogle Scholar
  13. 13.
    Sun N, Wu Y, Nanba K, Sbiera S, Kircher S, Kunzke T, et al. High-resolution tissue mass spectrometry imaging reveals a refined functional anatomy of the human adult adrenal gland. Endocrinology. 2018;159:1511–24.CrossRefGoogle Scholar
  14. 14.
    Rodrigo MA, Zitka O, Krizkova S, Moulick A, Adam V, Kizek R. MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal. 2014;95:245–55.CrossRefGoogle Scholar
  15. 15.
    Chughtai K, Heeren RM. Mass spectrometric imaging for biomedical tissue analysis. Chem Rev. 2010;110:3237–77.CrossRefGoogle Scholar
  16. 16.
    Shimma S, Kumada HO, Taniguchi H, Konno A, Yao I, Furuta K, et al. Microscopic visualization of testosterone in mouse testis by use of imaging mass spectrometry. Anal Bioanal Chem. 2016;408:7607–15.CrossRefGoogle Scholar
  17. 17.
    Harada T, Yubakubo A, Sugiura Y, Zaima N, Hayasaka T, Gotoinoue N, et al. Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope. Anal Chem. 2009;81:9153–7.CrossRefGoogle Scholar
  18. 18.
    Kurabe N, Igarashi H, Ohnishi I, Tajima S, Inoue Y, Takahashi Y, et al. Visualization of sphingolipids and phospholipids in the fundic gland mucosa of human stomach using imaging mass spectrometry. World J Gastrointes Pathophysiol. 2016;7:235–41.CrossRefGoogle Scholar
  19. 19.
    Fukuyama Y. MALDI matrix research for biopolymers. Mass Spectrometry. 2015;4:A0037.CrossRefGoogle Scholar
  20. 20.
    Li F, Wang X, Liu Y, Liu H, Li Z. Dephosphorylation of intact glycoprotein to greatly improve digestion efficiency coupled with matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometric analysis. Anal Chim Acta. 2013;787:140–7.CrossRefGoogle Scholar
  21. 21.
    Largy E, Cantais F, Van VG, Beck A, Delobel A. Orthogonal liquid chromatography-mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A. 2017;1498:128–46.CrossRefGoogle Scholar
  22. 22.
    Wei Y, Zhang Y, Lin Y, Li L, Liu J, Wang Z, et al. A uniform 2,5-dihydroxybenzoic acid layer as a matrix for MALDI-FTICR MS-based lipidomics. Analyst. 2015;140:1298–305.CrossRefGoogle Scholar
  23. 23.
    Malys BJ, Owens KG. Improving the analyte ion signal in matrix assisted laser desorption ionization imaging mass spectrometry via electrospray deposition by enhancing incorporation of the analyte in the matrix. Rapid Commun Mass Spectrom. 2017;31:804–12.CrossRefGoogle Scholar
  24. 24.
    Doktycz SJ, Savickas PJ, Krueger DA. Matrix/sample interactions in ultraviolet laser-desorption of proteins. Rapid Commun Mass Spectrom. 1991;5:145–8.CrossRefGoogle Scholar
  25. 25.
    Chan TWD, Colburn AW, Derrick PJ, Gardiner DJ, Bowden M. Suppression of matrix ions in ultraviolet laser desorption: scanning electron microscopy and Raman spectroscopy of the solid samples. J Mass Spectrom. 1992;27:188–94.Google Scholar
  26. 26.
    Cai YH, Wang YS. Impact of uneven sample morphology on mass resolving power in linear MALDI-TOF mass spectrometry: a comprehensive theoretical investigation. J Mass Spectrom. 2018;53:361–8.CrossRefGoogle Scholar
  27. 27.
    Strupat K, Karas M, Hillenkamp F. 2,5-Dihydroxybenzoic acid: a new matrix for laser desorption—ionization mass spectrometry. Int J Mass Spectrom. 1991;111:89–102.CrossRefGoogle Scholar
  28. 28.
    Liu Q, Shi J, Jiang G. Application of graphene in analytical sample preparation. Trends Analyt Chem. 2012;37:1–11.CrossRefGoogle Scholar
  29. 29.
    Liang X, Liu S, Wang S, Guo Y, Jiang S. Carbon-based sorbents: carbon nanotubes. J Chromatogr A. 2014;1357:53–67.CrossRefGoogle Scholar
  30. 30.
    Zhang BT, Zheng X, Li HF, Lin JM. Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta. 2013;784:1–17.CrossRefGoogle Scholar
  31. 31.
    Sunner J, Dratz E, Chen YC. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal Chem. 1995;67:4335–42.CrossRefGoogle Scholar
  32. 32.
    Chang C, Li X, Bai Y, Xu G, Feng B, Liao Y, et al. Graphene matrix for signal enhancement in ambient plasma assisted laser desorption ionization mass spectrometry. Talanta. 2013;114:54–9.CrossRefGoogle Scholar
  33. 33.
    Dale MJ, Knochenmuss R, Zenobi R. Graphite/liquid mixed matrices for laser desorption/ionization mass spectrometry. Anal Chem. 1996;68:3321–9.CrossRefGoogle Scholar
  34. 34.
    Wang Z, Cai Y, Wang Y, Zhou X, Zhang Y, Lu H. Improved MALDI imaging MS analysis of phospholipids using graphene oxide as new matrix. Sci Rep. 2017;7:44466.CrossRefGoogle Scholar
  35. 35.
    Gorka J, Bahr U, Karas M. Graphite supported preparation (GSP) of α-cyano-4-hydroxycinnamic acid (CHCA) for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for peptides and proteins. J Am Soc for Mass Spectrom. 2012;23:1949–54.CrossRefGoogle Scholar
  36. 36.
    Li X, Rao T, Xu Y, Hu K, Zhu Z, Li H, et al. Pharmacokinetic and pharmacodynamic evidence for developing an oral formulation of octreotide against gastric mucosal injury. Acta Pharmacol Sin. 2018;39(8):1373–85.Google Scholar
  37. 37.
    Rao T, Shao Y, Hamada N, Li Y, Ye H, Kang D, et al. Pharmacokinetic study based on a matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight imaging mass microscope combined with a novel relative exposure approach: a case of octreotide in mouse target tissues. Anal Chim Acta. 2017;952:71–80.Google Scholar
  38. 38.
    Beavis RC, Chait BT, Fales HM. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun Mass Spectrom. 1989;3(12):432–35.Google Scholar
  39. 39.
    Kudina O, Eral B, Mugele F. e-MALDI: an electrowetting-enhanced drop drying method for MALDI mass spectrometry. Anal Chem. 2016;88(9):4669–75.Google Scholar
  40. 40.
    Vorm O, Roepstorff P, Mann M. Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal Chem. 2002;66(19):3281–87.Google Scholar
  41. 41.
    Li X, Xu G, Zhang H, Liu S, Niu H, Peng J, et al. A homogeneous carbon nanosphere film-spot: for highly efficient laser desorption/ionization of small biomolecules. Carbon. 2017;121:343–52.Google Scholar
  42. 42.
    Shi R, Dai X, Li W, Lu F, Liu Y, Qu H, et al. Hydroxyl-group-dominated graphite dots reshape laser desorption/ionization mass spectrometry for small biomolecular analysis and imaging. ACS Nano. 2017;11(9):9500–13.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhangpei Zhu
    • 1
  • Jiajia Shen
    • 1
  • Dawei Wang
    • 2
  • Chong Chen
    • 1
  • Yangfan Xu
    • 1
  • Huimin Guo
    • 1
  • Dian Kang
    • 1
  • Naoki Hamada
    • 3
  • Jing Dong
    • 3
  • Guangji Wang
    • 1
    Email author
  • Yan Liang
    • 1
    Email author
  1. 1.Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
  2. 2.Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
  3. 3.Shimadzu China Mass Spectrometry CenterBeijingChina

Personalised recommendations