Analytical and Bioanalytical Chemistry

, Volume 411, Issue 9, pp 1715–1727 | Cite as

Preconcentration by solvent removal: techniques and applications

  • Elisenda Fornells
  • Emily F. Hilder
  • Michael C. BreadmoreEmail author


Preconcentration is the aspect of analytical method development covering the need to improve detection sensitivity. This review collects the advances in a diversity of approaches to achieve preconcentration by solvent removal. Evaporation in microfluidic and paper-based devices is reported in a variety of forms and later compared to membrane-assisted evaporation. Sample partitioning in an immiscible fluid is also described. The reported methodologies highlight the need to achieve good control of the gas-liquid interface to obtain accurate results. A comprehensive comparison of different strategies is presented here discussing their benefits and drawbacks as well as the research needs in this area.

Graphical abstract


Preconcentration Extraction (SFE | SPE | SPME) Sampling 



This research was conducted by the Australian Research Council (ARC) Training Centre for Portable Analytical Separation Technologies (IC140100022). Support from the University of Tasmania, University of South Australia and Trajan Scientific and Medical is gratefully acknowledged.

Funding information

MCB is a recipient of an ARC Future Fellowship (FT130100101). EFV is a recipient of an ARC ICHDR scholarship and an International Tuition Scholarship from the University of Tasmania.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Van Vliet HPM, Bootsmann TC, Frei RW, Brinkman UAT. On-line trace enrichment in high-performance liquid chromatography using a pre-column. J Chromatogr A. 1979;185:483–95.CrossRefGoogle Scholar
  2. 2.
    Werkhoven-Goewie CE, Brinkman UAT, Frei RW. Trace enrichment of polar compounds on chemically bonded and carbonaceous sorbents and application to chlorophenol. Anal Chem. 1981;53:2072–80.CrossRefGoogle Scholar
  3. 3.
    Auroux PA, Iossifidis D, Reyes DR, Manz A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem. 2002;74:2637–52.CrossRefGoogle Scholar
  4. 4.
    Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32:347–50.CrossRefGoogle Scholar
  5. 5.
    Sueyoshi K, Kitagawa F, Otsuka K. Recent progress of online sample preconcentration techniques in microchip electrophoresis. J Sep Sci. 2008;31:2650–66.CrossRefGoogle Scholar
  6. 6.
    Lin CC, Hsu JL, Lee GB. Sample preconcentration in microfluidic devices. Microfluid Nanofluid. 2011;10:481–511.CrossRefGoogle Scholar
  7. 7.
    Song S, Singh AK. On-chip sample preconcentration for integrated microfluidic analysis. Anal Bioanal Chem. 2006;384:41–3.CrossRefGoogle Scholar
  8. 8.
    Stegehuis DS, Irthu H, Tjaden UR, Van Der Greef J. Isotachophoresis as an on-line concentration pretreatment technique in capillary electrophoresis. J Chromatogr A. 1991;538:393–402.CrossRefGoogle Scholar
  9. 9.
    Wainright A, Williams SJ, Ciambrone G, Xue Q, Wei J, Harris D. Sample pre-concentration by isotachophoresis in microfluidic devices. J Chromatogr A. 2002;979:69–80.CrossRefGoogle Scholar
  10. 10.
    Rosenfeld T, Bercovici M. 1000-fold sample focusing on paper-based microfluidic devices. Lab Chip. 2014;14:4465–74.CrossRefGoogle Scholar
  11. 11.
    Ramsey JD, Collins GE. Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Anal Chem. 2005;77:6664–70.CrossRefGoogle Scholar
  12. 12.
    Petersson M, Nilsson J, Wallman L, Laurell T, Johansson J, Nilsson S. Sample enrichment in a single levitated droplet for capillary electrophoresis. J Chromatogr B Biomed Appl. 1998:39–46.Google Scholar
  13. 13.
    Neugebauer S, Evans SR, Aguilar ZP, Mosbach M, Fritsch I, Schuhmann W. Analysis in ultrasmall volumes: microdispensing of picoliter droplets and analysis without protection from evaporation. Anal Chem. 2004;76:458–63.CrossRefGoogle Scholar
  14. 14.
    Shao F, Ng TW, Liew OW, Fu J, Sridhar T. Evaporative preconcentration and cryopreservation of fluorescent analytes using superhydrophobic surfaces. Soft Matter. 2012;8:3563.CrossRefGoogle Scholar
  15. 15.
    Walker GM, Beebe DJ. An evaporation-based microfluidic sample concentration method. Lab Chip. 2002;2:57–61.CrossRefGoogle Scholar
  16. 16.
    Xu Q, Chen R, Wang H, Zhu X, Liao Q, He X. IR laser induced meniscus evaporation from a microchannel. Chem Eng Sci. 2015;130:31–40.CrossRefGoogle Scholar
  17. 17.
    Kachel S, Zhou Y, Scharfer P, Vrančić C, Petrich W, Schabel W. Evaporation from open microchannel grooves. Lab Chip. 2014;14:771–8.CrossRefGoogle Scholar
  18. 18.
    Shao F, Ng TW, Lye JKK, Liew OW. Evaporative preconcentration of fluorescent protein samples in capillary based microplates. J Fluoresc. 2011;21:1835–9.CrossRefGoogle Scholar
  19. 19.
    Cortez J, Pasquini C. Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy. Anal Chem. 2013;85:1547–54.CrossRefGoogle Scholar
  20. 20.
    Villa JEL, Pasquini C, Poppi RJ. Coupling of the ring-oven-based preconcentration technique and surface-enhanced Raman spectroscopy: application for the determination of purine bases in DNA. Anal Chim Acta. 2017;991:95–103.CrossRefGoogle Scholar
  21. 21.
    Wong SY, Cabodi M, Rolland J, Klapperich CM. Evaporative concentration on a paper-based device to concentrate analytes in a biological fluid. Anal Chem. 2014;86:11981–5.CrossRefGoogle Scholar
  22. 22.
    Syms R. Rapid evaporation-driven chemical pre-concentration and separation on paper. Biomicrofluidics. 2017;11:044116.CrossRefGoogle Scholar
  23. 23.
    Xu W, Wu LL, Li GP, Bachman M. A Vapor Based microfluidic sample concentrator. In: 14th Int. Conf Miniaturized Syst Chem Life Sci, 2010.Google Scholar
  24. 24.
    Choi J-W, Hosseini Hashemi SM, Erickson D, Psaltis D. A micropillar array for sample concentration via in-plane evaporation. Biomicrofluidics. 2014;8:044108.CrossRefGoogle Scholar
  25. 25.
    Constantinou A, Ghiotto F, Lam KF, Gavriilidis A. Stripping of acetone from water with microfabricated and membrane gas–liquid contactors. Analyst. 2014;139:266–72.CrossRefGoogle Scholar
  26. 26.
    Cvetković BZ, Lade O, Marra L, Arima V, Rinaldi R, Dittrich PS. Nitrogen supported solvent evaporation using continuous-flow microfluidics. RSC Adv. 2012;2:11117.CrossRefGoogle Scholar
  27. 27.
    Casadevall i Solvas X, Turek V, Prodromakis T, Edel JB. Microfluidic evaporator for on-chip sample concentration. Lab Chip. 2012;12:4049.CrossRefGoogle Scholar
  28. 28.
    Timmer BH, van Delft KM, Olthuis W, Bergveld P, van den Berg A. Micro-evaporation electrolyte concentrator. Sensors Actuators B. 2003;91:342–6.CrossRefGoogle Scholar
  29. 29.
    Sharma NR, Lukyanov A, Bardell RL, Seifried L, Shen M. Development of an evaporation-based microfluidic sample concentrator. Proc. SPIE 6886, Microfluid. BioMEMS, Med. Microsystems VI. 2008:68860R.Google Scholar
  30. 30.
    Zhang JY, Do J, Premasiri WR, Ziegler LD, Klapperich CM. Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect. Lab Chip. 2010;10:3265–70.CrossRefGoogle Scholar
  31. 31.
    Zhang J, Mahalanabis M, Liu L, Chang J, Pollock N, Klapperich C. A disposable microfluidic virus concentration device based on evaporation and interfacial tension. Diagnostics. 2013;3:155–69.CrossRefGoogle Scholar
  32. 32.
    Tseng W-Y, van Dam RM. Compact microfluidic device for rapid concentration of PET tracers. Lab Chip. 2014;14:2293–302.CrossRefGoogle Scholar
  33. 33.
    Fornells E, Barnett B, Bailey M, Shellie RA, Hilder EF, Breadmore MC. Membrane assisted and temperature controlled on-line evaporative concentration for microfluidics. J Chromatogr A. 2017;1486:110–6.CrossRefGoogle Scholar
  34. 34.
    Bishop EJ, Mitra S. Hollow fiber membrane concentrator for on-line preconcentration. J Chromatogr A. 2004;1046:11–7.CrossRefGoogle Scholar
  35. 35.
    Takeuchi M, Dasgupta PK, Dyke JV, Srinivasan K. Postcolumn concentration in liquid chromatography. On-line eluent evaporation and analyte postconcentration in ion chromatography. Anal Chem. 2007;79:5690–7.CrossRefGoogle Scholar
  36. 36.
    Gethard K, Mitra S. Membrane distillation as an online concentration technique: application to the determination of pharmaceutical residues in natural waters. Anal Bioanal Chem. 2011;400:571–5.CrossRefGoogle Scholar
  37. 37.
    Gethard K, Mitra S. Carbon nanotube enhanced membrane distillation for online preconcentration of trace pharmaceuticals in polar solvents. Analyst. 2011;136:2643–8.CrossRefGoogle Scholar
  38. 38.
    Zhang H, Tiggelaar RM, Schlautmann S, Bart J, Gardeniers H. In-line sample concentration by evaporation through porous hollow fibers and micromachined membranes embedded in microfluidic devices. Electrophoresis. 2016;37:463–71.CrossRefGoogle Scholar
  39. 39.
    Bendahl L, Gammelgaard B. Sample introduction systems for reversed phase LC-ICP-MS of selenium using large amounts of methanol—comparison of systems based on membrane desolvation, a spray chamber and direct injection. J Anal At Spectrom. 2005;20:410–6.CrossRefGoogle Scholar
  40. 40.
    Møller LH, Jensen CS, Nguyen TTTN, Stürup S, Gammelgaard B. Evaluation of a membrane desolvator for LC-ICP-MS analysis of selenium and platinum species for application to peptides and proteins. J Anal At Spectrom. 2015;30:277–84.CrossRefGoogle Scholar
  41. 41.
    Kahen K, Jorabchi K, Montaser A. Desolvation-induced non-linearity in the analysis of bromine using an ultrasonic nebulizer with membrane desolvation and inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2006;21:588.CrossRefGoogle Scholar
  42. 42.
    Eijkel JCT, Bomer JG, Van Den Berg A. Osmosis and pervaporation in polyimide submicron microfluidic channel structures. Appl Phys Lett. 2005;87:85–8.CrossRefGoogle Scholar
  43. 43.
    Puleo CM, Wang T-H. Microfluidic means of achieving attomolar detection limits with molecular beacon probes. Lab Chip. 2009;9:1065–72.CrossRefGoogle Scholar
  44. 44.
    Lee J, Kim M, Park J, Kim T. Self-assembled particle membranes for in situ concentration and chemostat-like cultivation of microorganisms on a chip. Lab Chip. 2016;16:1072–80.CrossRefGoogle Scholar
  45. 45.
    He M, Sun C, Chiu DT. Concentrating solutes and nanoparticles within individual aqueous microdroplets. Anal Chem. 2004;76:1222–7.CrossRefGoogle Scholar
  46. 46.
    Bajpayee A, Edd JF, Chang A, Toner M. Concentration of glycerol in aqueous microdroplets by selective removal of water. Anal Chem. 2010;82:1288–91.CrossRefGoogle Scholar
  47. 47.
    Fukuyama M, Hibara A. Microfluidic selective concentration of microdroplet contents by spontaneous emulsification. Anal Chem. 2015;87:3562–5.CrossRefGoogle Scholar
  48. 48.
    Ji J, Nie L, Li Y, Yang P, Liu B. Simultaneous online enrichment and identification of trace species based on microfluidic droplets. Anal Chem. 2013;85:9617–22.CrossRefGoogle Scholar
  49. 49.
    Erbil HY. Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv Colloid Interf Sci. 2012;170:67–86.CrossRefGoogle Scholar
  50. 50.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389:827–9.CrossRefGoogle Scholar
  51. 51.
    Dash S, Garimella SV. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces. Phys Rev E - Stat Nonlinear Soft Matter Phys. 2014;89:042402.CrossRefGoogle Scholar
  52. 52.
    Lye JKK, Ng TW, Neild A, Liew OW. A capacity for mixing in capillary wells for microplates. Anal Biochem. 2011;410:152–4.CrossRefGoogle Scholar
  53. 53.
    Weisz H. Microanalysis by the ring oven technique. International Series of Monographs in Analytical Chemistry, Pergamon Press, 1970.Google Scholar
  54. 54.
    Weisz H. Recent applications of the ring-oven technique. A brief review. Anal Chim Acta. 1987;202:25–34.CrossRefGoogle Scholar
  55. 55.
    Xu W, Xue H, Bachman M, Li GP. Virtual walls in microchannels. Annu. Int. Conf. IEEE Eng Med Biol. – Proc, 2006: 2840–2843.Google Scholar
  56. 56.
    Zhao B, Moore JS, Beebe DJ. Surface-directed liquid flow inside microchannels. Science. 2001;291:1023–6.CrossRefGoogle Scholar
  57. 57.
    Huebner A, Bratton D, Whyte G, Yang M, Demello AJ, Abell C, et al. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip. 2009;9:692–8.CrossRefGoogle Scholar
  58. 58.
    Bruce Stewart H, Wendroff B. Two-phase flow: models and methods. J Comput Phys. 1984;56:363–409.CrossRefGoogle Scholar
  59. 59.
    Baroud CN, Willaime H. Multiphase flows in microfluidics. Comptes Rendus Phys. 2004;5:547–55.CrossRefGoogle Scholar
  60. 60.
    Zhao CX, Middelberg APJ. Two-phase microfluidic flows. Chem Eng Sci. 2011;66:1394–411.CrossRefGoogle Scholar
  61. 61.
    Günther A, Jensen KF. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip. 2006;6:1487–503.CrossRefGoogle Scholar
  62. 62.
    Drioli E, Calabro V, Wu Y. Microporous membranes in membrane distillation. Pure Appl Chem. 1986;58:1657–1662.Google Scholar
  63. 63.
    Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review. Desalination. 2012;287:2–18.CrossRefGoogle Scholar
  64. 64.
    Jani JM, Wessling M, Lammertink RGH. A microgrooved membrane based gas-liquid contactor. Microfluid Nanofluid. 2012;13:499–509.CrossRefGoogle Scholar
  65. 65.
    Lautenschleger A, Kenig EY, Voigt A, Sundmacher K. Model-based analysis of a gas/vapor-liquid microchannel membrane contactor. AICHE J. 2015;61:2240–56.CrossRefGoogle Scholar
  66. 66.
    Chao PH, Collins J, Argus JP, Tseng W-Y, Lee JT, Michael van Dam R. Automatic concentration and reformulation of PET tracers via microfluidic membrane distillation. Lab Chip. 2017;17:1802–16.CrossRefGoogle Scholar
  67. 67.
    de Jong J, Ankoné B, Lammertink RGH, Wessling M. New replication technique for the fabrication of thin polymeric microfluidic devices with tunable porosity. Lab Chip. 2005;5:1240–7.CrossRefGoogle Scholar
  68. 68.
    de Jong J, Geerken MJ, Lammertink RGH, Wessling M. Porous microfluidic devices—fabrication and applications. Chem Eng Technol. 2007;30:309–15.CrossRefGoogle Scholar
  69. 69.
    Leman M, Abouakil F, Griffiths AD, Tabeling P. Droplet-based microfluidics at the femtolitre scale. Lab Chip. 2015;15:753–65.CrossRefGoogle Scholar
  70. 70.
    Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. Lab Chip. 2017;17:34–75.CrossRefGoogle Scholar
  71. 71.
    Eslami F, Elliott J a W. Stability analysis of microdrops during concentrating processes. J Phys Chem B. 2014;118:3630–41.CrossRefGoogle Scholar
  72. 72.
    Eslami F, Elliott JAW. Design of microdrop concentrating processes. J Phys Chem B. 2013;117:2205–14.CrossRefGoogle Scholar
  73. 73.
    Jeffries GDM, Kuo JS, Chiu DT. Dynamic modulation of chemical concentration in an aqueous droplet. Angew Chem Int Ed. 2007;46:1326–8.CrossRefGoogle Scholar
  74. 74.
    Shen AQ, Wang D, Spicer PT. Kinetics of colloidal templating using emulsion drop consolidation. Langmuir. 2007;23:12821–6.CrossRefGoogle Scholar
  75. 75.
    Lin S, Nejati S, Boo C, Hu Y, Osuji CO, Elimelech M. Omniphobic membrane for robust membrane distillation. Environ Sci Technol Lett. 2014;1:443–7.CrossRefGoogle Scholar
  76. 76.
    Rezaei M, Warsinger DM, Lienhard V JH, Samhaber WM. Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface. J Membr Sci. 2017;530:42–52.CrossRefGoogle Scholar
  77. 77.
    Singh AK, Ko DH, Vishwakarma NK, Jang S, Min KI, Kim DP. Micro-total envelope system with silicon nanowire separator for safe carcinogenic chemistry. Nat Commun. 2016;7:10741.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Elisenda Fornells
    • 1
    • 2
  • Emily F. Hilder
    • 1
    • 3
  • Michael C. Breadmore
    • 1
    • 2
    Email author
  1. 1.ARC Training Centre for Portable Analytical Separation Technologies (ASTech)HobartAustralia
  2. 2.ACROSS (Australian Centre for Research on Separation Science)University of TasmaniaHobartAustralia
  3. 3.Future Industries InstituteUniversity of South AustraliaAdelaideAustralia

Personalised recommendations