Analytical and Bioanalytical Chemistry

, Volume 411, Issue 9, pp 1863–1871 | Cite as

Surface-enhanced infrared attenuated total reflection spectroscopy via carbon nanodots for small molecules in aqueous solution

  • Yuan Hu
  • Qiong Chen
  • Lijie Ci
  • Kecheng Cao
  • Boris MizaikoffEmail author
Paper in Forefront
Part of the following topical collections:
  1. Nanoparticles for Bioanalysis


In this study, carbon nanodots (CNDs) with excellent aqueous dispersibility, narrow size distribution, and oxygen-rich functional groups have been prepared via a green electrochemical method. Graphite electrodes were directly electrolyzed at ambient temperatures to form uniform CNDs in deionized water, which is free from additional oxidant/reductant. As-synthesized CNDs have been applied to coat an attenuated total reflection (ATR) waveguide enabling surface-enhanced infrared absorption (SEIRA) spectroscopic studies for detecting a variety of analytes in aqueous phase with remarkably enhanced IR band intensities. Finally, the proposed ATR-SEIRA strategy enabled quantitatively analyzing adenine in aqueous solution after optimizing the amount of CNDs, the solution pH, and potential CND aggregation.

Graphical abstract


Carbon nanodots Surface-enhanced infrared absorption spectroscopy SEIRA Attenuated total reflection ATR Adenine 



YH gratefully acknowledges the Chinese Scholarship Council (CSC) for financial support. YH and BM thank the strategic partnership program funded by the DAAD “U5—Ulm University” (#57271317) for facilitating research exchange between Ulm Univ. and Shandong Univ. LC is also supported by Startup Funding of Distinguished Professorship of “1000 Talents Program” (#31370086963030).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2018_1521_MOESM1_ESM.pdf (612 kb)
ESM 1 (PDF 611 kb)


  1. 1.
    Haas J, Mizaikoff B. Advances in mid-infrared spectroscopy for chemical analysis. Annu Rev Anal Chem. 2016;9(1):45–68.CrossRefGoogle Scholar
  2. 2.
    Yang X, Sun Z, Low T, Hu H, Guo X, Garcia de Abajo FJ, et al. Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy. Adv Mater. 2018;30(20):e1704896.CrossRefGoogle Scholar
  3. 3.
    Neubrech F, Huck C, Weber K, Pucci A, Giessen H. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem Rev. 2017;117:5110–45.CrossRefGoogle Scholar
  4. 4.
    Adato R, Aksu S, Altug H. Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy. Mater Today. 2015;18(8):436–46.CrossRefGoogle Scholar
  5. 5.
    Lopez-Lorente AI, Mizaikoff B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem. 2016;408(11):2875–89.CrossRefGoogle Scholar
  6. 6.
    Adato R, Altug H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun. 2013;4:2154.CrossRefGoogle Scholar
  7. 7.
    Xu JY, Jin B, Zhao Y, Wang K, Xia XH. In situ monitoring of the DNA hybridization by attenuated total reflection surface-enhanced infrared absorption spectroscopy. Chem Commun. 2012;48(25):3052–4.CrossRefGoogle Scholar
  8. 8.
    Vivek JP, Berry N, Papageorgiou G, Nichols RJ, Hardwick LJ. Mechanistic insight into the superoxide induced ring opening in propylene carbonate based electrolytes using in situ surface-enhanced infrared spectroscopy. J Am Chem Soc. 2016;138(11):3745–51.CrossRefGoogle Scholar
  9. 9.
    Papasizza M, Cuesta A. In situ monitoring using ATR-SEIRAS of the electrocatalytic reduction of CO2 on Au in an ionic liquid/water mixture. ACS Catal. 2018;8(7):6345–52.CrossRefGoogle Scholar
  10. 10.
    Rodrigo D, Limaj O, Janner D, Etezadi D, Garcia de Abajo FJ, Pruneri V, et al. Mid-infrared plasmonic biosensing with graphene. Science. 2015;349(6244):165–8.CrossRefGoogle Scholar
  11. 11.
    Hu Y, López-Lorente ÁI, Mizaikoff B. Versatile analytical platform based on graphene-enhanced infrared attenuated Total reflection spectroscopy. ACS Photonics. 2017;4(7):1831–8.Google Scholar
  12. 12.
    Zundel L, Manjavacas A. Spatially resolved optical sensing using graphene nanodisk arrays. ACS Photonics. 2017;4(7):1831–8.Google Scholar
  13. 13.
    Zheng B, Yang X, Li J, Shi CF, Wang ZL, Xia XH. Graphene plasmon-enhanced IR biosensing for in situ detection of aqueous-phase molecules with an attenuated total reflection mode. Anal Chem. 2018;90:10786–94.CrossRefGoogle Scholar
  14. 14.
    Xin W, Yang JM, Li C, Goorsky MS, Carlson L, De Rosa IM. Novel strategy for one-pot synthesis of gold nanoplates on carbon nanotube sheet as an effective flexible SERS substrate. ACS Appl Mater Interfaces. 2017;9(7):6246–54.CrossRefGoogle Scholar
  15. 15.
    Liu D, Chen X, Hu Y, Sun T, Song Z, Zheng Y, et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat Commun. 2018;9(1):193.CrossRefGoogle Scholar
  16. 16.
    Luo P, Li C, Shi G. Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys Chem Chem Phys. 2012;14(20):7360–6.CrossRefGoogle Scholar
  17. 17.
    Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Eng. 2010;49(38):6726–44.CrossRefGoogle Scholar
  18. 18.
    Bai J, Sun C, Jiang X. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells. Anal Bioanal Chem. 2016;408(17):4705–14.CrossRefGoogle Scholar
  19. 19.
    Roy P, Chen P-C, Periasamy AP, Chen Y-N, Chang H-T. Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today. 2015;18(8):447–58.CrossRefGoogle Scholar
  20. 20.
    Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 2015;7(5):1586–95.CrossRefGoogle Scholar
  21. 21.
    Salinas-Castillo A, Morales DP, Lapresta-Fernandez A, Ariza-Avidad M, Castillo E, Martinez-Olmos A, et al. Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots. Anal Bioanal Chem. 2016;408(11):3013–20.CrossRefGoogle Scholar
  22. 22.
    Fan Y, Cheng H, Zhou C, Xie X, Liu Y, Dai L, et al. Honeycomb architecture of carbon quantum dots: a new efficient substrate to support gold for stronger SERS. Nanoscale. 2012;4(5):1776–81.CrossRefGoogle Scholar
  23. 23.
    Bhunia SK, Zeiri L, Manna J, Nandi S, Jelinek R. Carbon-dot/silver-nanoparticle flexible SERS-active films. ACS Appl Mater Interfaces. 2016;8(38):25637–43.CrossRefGoogle Scholar
  24. 24.
    Zhang G, Hu L, Zhu K, Yan M, Liu J, Yang J, et al. Contribution of oligomer/carbon dots hybrid semiconductor nanoribbon to surface-enhanced Raman scattering property. Appl Surf Sci. 2016;364:660–9.CrossRefGoogle Scholar
  25. 25.
    Arvand M, Ghodsi N, Zanjanchi MA. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine. Biosens Bioelectron. 2016;77:837–44.CrossRefGoogle Scholar
  26. 26.
    Xu Q, Liu Z, Hu X, Kong L, Liu S. Resonance Rayleigh scattering spectra of Cu2+−adenine-WO4(2-) system and its analytical application. Analyst. 2012;137(4):868–74.CrossRefGoogle Scholar
  27. 27.
    Hou Y, Liu X, Tang X, Li T, Wu Q, Jiang Y, et al. Nucleobase chemosensor based on carbon nanodots. Talanta. 2017;173:107–12.CrossRefGoogle Scholar
  28. 28.
    Wang G, Shi G, Chen X, Yao R, Chen F. A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Microchim Acta. 2015;182(1–2):315–22.CrossRefGoogle Scholar
  29. 29.
    Premasiri WR, Lee JC, Sauer-Budge A, Theberge R, Costello CE, Ziegler LD. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem. 2016;408(17):4631–47.CrossRefGoogle Scholar
  30. 30.
    Premasiri WR, Chen Y, Williamson PM, Bandarage DC, Pyles C, Ziegler LD. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Anal Bioanal Chem. 2017;409(11):3043–54.CrossRefGoogle Scholar
  31. 31.
    Jha SK, Ahmed Z, Agio M, Ekinci Y, Loffler JF. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J Am Chem Soc. 2012;134(4):1966–9.CrossRefGoogle Scholar
  32. 32.
    Sato Y, Noda H, Mizutani F, Yamakata A, Osawa M. In situ surface-enhanced infrared study of hydrogen bond pairing of complementary nucleic acid bases at the electrochemical interface. Anal Chem. 2004;76(18):5564–9.CrossRefGoogle Scholar
  33. 33.
    Rodes A, Rueda M, Prieto F, Prado C, Feliu JM, Aldaz A. Adenine adsorption at single crystal and thin-film gold electrodes: an in situ infrared spectroscopy study. J Phys Chem C. 2009;113(43):18784–94.CrossRefGoogle Scholar
  34. 34.
    Kundu J, Neumann O, Janesko BG, Zhang D, Lal S, Barhoumi A, et al. Adenine− and adenosine monophosphate (AMP)−gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies. J Phys Chem C. 2009;113(32):14390–7.CrossRefGoogle Scholar
  35. 35.
    Rueda M, Prieto F, Rodes A, Delgado JM. In situ infrared study of adenine adsorption on gold electrodes in acid media. Electrochim Acta. 2012;82:534–42.CrossRefGoogle Scholar
  36. 36.
    López-Lorente ÁI, Wang P, Mizaikoff B. Towards label-free mid-infrared protein assays: in-situ formation of bare gold nanoparticles for surface enhanced infrared absorption spectroscopy of bovine serum albumin. Microchim Acta. 2017;184(2):453–62.CrossRefGoogle Scholar
  37. 37.
    Papadopoulou E, Bell SEJ. Structure of adenine on metal nanoparticles: pH equilibria and formation of ag+ complexes detected by surface-enhanced Raman spectroscopy. J Phys Chem C. 2010;114(51):22644–51.CrossRefGoogle Scholar
  38. 38.
    Alula MT, Yang J. Photochemical decoration of silver nanoparticles on magnetic microspheres as substrates for the detection of adenine by surface-enhanced Raman scattering. Anal Chim Acta. 2014;812:114–20.CrossRefGoogle Scholar
  39. 39.
    Arvand M, Sayyar Ardaki M. Poly-l-cysteine/electrospun copper oxide nanofibers-zinc oxide nanoparticles nanocomposite as sensing element of an electrochemical sensor for simultaneous determination of adenine and guanine in biological samples and evaluation of damage to dsDNA and DNA purine bases by UV radiation. Anal Chim Acta. 2017;986:25–41.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuan Hu
    • 1
  • Qiong Chen
    • 2
  • Lijie Ci
    • 2
  • Kecheng Cao
    • 3
  • Boris Mizaikoff
    • 1
    Email author
  1. 1.Institute of Analytical and Bioanalytical ChemistryUlm UniversityUlmGermany
  2. 2.Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and EngineeringShandong UniversityJinanChina
  3. 3.Electron Microscopy of Materials Science, Central Facility for Electron MicroscopyUlm UniversityUlmGermany

Personalised recommendations