Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 24, pp 6255–6264 | Cite as

Capillary zone electrophoresis coupled to drift tube ion mobility-mass spectrometry for the analysis of native and APTS-labeled N-glycans

  • Kevin Jooß
  • Sven W. Meckelmann
  • Julia Klein
  • Oliver J. Schmitz
  • Christian NeusüßEmail author
Paper in Forefront
Part of the following topical collections:
  1. Close-Up of Current Developments in Ion Mobility Spectrometry

Abstract

Capillary zone electrophoresis (CZE) based on electrophoretic mobility in the liquid phase and ion mobility spectrometry (IMS) based on mobilities in the gas phase are both powerful techniques for the separation of complex samples. Protein glycosylation is one of the most common post-translational modifications associated with a wide range of biological functions and human diseases. Due to their high structural variability, the analysis of glycans still represents a challenging task. In this work, the first on-line coupling of CZE with drift tube ion mobility-mass spectrometry (DTIM-MS) has been perfomed to further improve separation capabilities for the analysis of native and 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled N-glycans. In this way, a complexity of glycan signals was revealed which could not be resolved by these techniques individually, shown for both native and APTS-labeled glycans. Each individual glycan signal separated in CZE exhibited an unexpectedly high number of peaks observed in the IMS dimension. This observation could potentially be explained by the presence of isomeric forms, including different linkages, and/or gas-phase conformers. In addition, the type of sialic acid attached to glycans has a significant impact on the obtained drift time profile. Furthermore, the application of α2-3 neuraminidase enabled the partial assignment of peaks in the arrival time distribution considering their sialic acid linkages (α2-3/α2-6). This work is a showcase for the high potential of CZE-DTIM-MS, which is expected to find various applications in the future.

Graphical abstract

Keywords

Glycan analysis CE-IM-MS Isomer separation Liquid- and gas-phase separation 

Abbreviations

AGP

α-1-Acid glycoprotein

APTS

8-Aminopyrene-1,3,6-trisulfonic acid

ATD

Arrival time distribution

BGE

Background electrolyte

CE

Capillary electrophoresis

CZE

Capillary zone electrophoresis

DT

Drift time

DTIM-MS

Drift tube ion mobility-mass spectrometry

ESI

Electrospray ionization

FAIMS-MS

High-field asymmetric waveform ion mobility spectrometry mass spectrometry

HILIC

Hydrophilic interaction chromatography

IMS

Ion mobility spectrometry

mAb

Monoclonal antibody

MS

Mass spectrometry

NeuNAc

N-Acetylneuraminic acid

NeuNGc

N-Glycolylneuraminic acid

SA

Sialic acid

SL

Sheath liquid

TOF-MS

Time-of-flight mass spectrometry

TWIM-MS

Traveling wave ion mobility-mass spectrometry

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1515_MOESM1_ESM.pdf (697 kb)
ESM 1 (PDF 696 kb)

References

  1. 1.
    Williams JP, Grabenauer M, Holland RJ, Carpenter CJ, Wormald MR, Giles K, et al. Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int J Mass Spectrom. 2010;298(1–3):119–27.CrossRefGoogle Scholar
  2. 2.
    Rudd PM. Glycosylation and the immune system. Science. 2001;291(5512):2370–6.CrossRefGoogle Scholar
  3. 3.
    Montreuil J, Vliegenthart JFG, Glycoproteins SH. New comprehensive biochemistry, vol. 29a. Amsterdam: Elsevier; 1995.Google Scholar
  4. 4.
    Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343(6166):1235681.CrossRefGoogle Scholar
  5. 5.
    Zhang L, Luo S, Zhang B. Glycan analysis of therapeutic glycoproteins. MAbs. 2016;8(2):205–15.CrossRefGoogle Scholar
  6. 6.
    Dwek RA. Glycobiology: toward understanding the function of sugars. Chem Rev. 1996;96(2):683–720.CrossRefGoogle Scholar
  7. 7.
    Wormald MR, Petrescu AJ, Pao Y-L, Glithero A, Elliott T, Dwek RA. Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev. 2002;102(2):371–86.CrossRefGoogle Scholar
  8. 8.
    Sanchez-De Melo I, Grassi P, Ochoa F, Bolivar J, García-Cózar FJ, Durán-Ruiz MC. N-glycosylation profile analysis of trastuzumab biosimilar candidates by normal phase liquid chromatography and MALDI-TOF MS approaches. J Proteome. 2015;127:225–33.CrossRefGoogle Scholar
  9. 9.
    Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397(8):3457–81.CrossRefGoogle Scholar
  10. 10.
    Melmer M, Stangler T, Premstaller A, Lindner W. Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A. 2011;1218(1):118–23.CrossRefGoogle Scholar
  11. 11.
    Bunz S-C, Cutillo F, Neusüß C. Analysis of native and APTS-labeled N-glycans by capillary electrophoresis/time-of-flight mass spectrometry. Anal Bioanal Chem. 2013;405(25):8277–84.CrossRefGoogle Scholar
  12. 12.
    Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH. Ion mobility-mass spectrometry. J Mass Spectrom. 2008;43(1):1–22.CrossRefGoogle Scholar
  13. 13.
    Hofmann J, Pagel K. Glycan analysis by ion mobility-mass spectrometry. Angew Chem Int Ed. 2017;56(29):8342–9.CrossRefGoogle Scholar
  14. 14.
    Aizpurua-Olaizola O, Sastre Toraño J, Falcon-Perez JM, Williams C, Reichardt N, Boons G-J. Mass spectrometry for glycan biomarker discovery. TrAC Trends Anal Chem. 2018;100:7–14.CrossRefGoogle Scholar
  15. 15.
    Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, et al. Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Ann Rev Anal Chem. 2017;10(1):71–92.CrossRefGoogle Scholar
  16. 16.
    Li J, Purves RW, Richards JC. Coupling capillary electrophoresis and high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of complex lipopolysaccharides. Anal Chem. 2004;76(16):4676–83.CrossRefGoogle Scholar
  17. 17.
    Mironov GG, Okhonin V, Khan N, Clouthier CM, Berezovski MV. Conformational dynamics of DNA G-quadruplex in solution studied by kinetic capillary electrophoresis coupled on-line with mass spectrometry. Chem Open. 2014;3(2):58–64.Google Scholar
  18. 18.
    Mironov GG, Clouthier CM, Akbar A, Keillor JW, Berezovski MV. Simultaneous analysis of enzyme structure and activity by kinetic capillary electrophoresis–MS. Nat Chem Biol. 2016;12(11):918–22.CrossRefGoogle Scholar
  19. 19.
    Hallen RW, Shumate CB, Siems WF, Tsuda T, Hill HH. Preliminary investigation of ion mobility spectrometry after capillary electrophoretic introduction. J Chromatogr. 1989;480:233–45.CrossRefGoogle Scholar
  20. 20.
    Nakano M. Detailed structural features of glycan chains derived from 1-acid glycoproteins of several different animals: the presence of hypersialylated, O-acetylated sialic acids but not disialyl residues. Glycobiology. 2004;14(5):431–41.CrossRefGoogle Scholar
  21. 21.
    Yamaguchi Y, Nishima W, Re S, Sugita Y. Confident identification of isomeric N-glycan structures by combined ion mobility mass spectrometry and hydrophilic interaction liquid chromatography. Rapid Commun Mass Spectrom. 2012;26(24):2877–84.CrossRefGoogle Scholar
  22. 22.
    Struwe WB, Baldauf C, Hofmann J, Rudd PM, Pagel K. Ion mobility separation of deprotonated oligosaccharide isomers – evidence for gas-phase charge migration. Chem Commun. 2016;52(83):12353–6.CrossRefGoogle Scholar
  23. 23.
    Stow SM, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, et al. An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements. Anal Chem. 2017;89(17):9048–55.CrossRefGoogle Scholar
  24. 24.
    Cumming DA, Hellerqvist CG, Harris-Brandts M, Michnick SW, Carver JP, Bendiak B. Structures of asparagine-linked oligosaccharides of the glycoprotein fetuin having sialic acid linked to N-acetylglucosamine. Biochemistry. 1989;28:6500–12.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kevin Jooß
    • 1
    • 2
  • Sven W. Meckelmann
    • 3
    • 4
  • Julia Klein
    • 3
    • 4
  • Oliver J. Schmitz
    • 3
    • 4
  • Christian Neusüß
    • 1
    Email author
  1. 1.Faculty of ChemistryAalen UniversityAalenGermany
  2. 2.Research Unit Analytical BioGeoChemistryHelmholtz Zentrum MünchenNeuherbergGermany
  3. 3.Applied Analytical ChemistryUniversity of Duisburg-EssenEssenGermany
  4. 4.Teaching and Research Center for SeparationUniversity of Duisburg-EssenEssenGermany

Personalised recommendations