Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 3, pp 565–580 | Cite as

A combined chemical imaging approach using (MC) LA-ICP-MS and NIR-HSI to evaluate the diagenetic status of bone material for Sr isotope analysis

  • Anika Retzmann
  • Magdalena Blanz
  • Andreas Zitek
  • Johanna Irrgeher
  • Jörg Feldmann
  • Maria Teschler-Nicola
  • Thomas ProhaskaEmail author
Paper in Forefront
Part of the following topical collections:
  1. Elemental and Molecular Imaging by LA-ICP-MS

Abstract

This paper presents a combination of elemental and isotopic spatial distribution imaging with near-infrared hyperspectral imaging (NIR-HSI) to evaluate the diagenetic status of skeletal remains. The aim is to assess how areas with biogenic n(87Sr)/n(86Sr) isotope-amount ratios may be identified in bone material, an important recorder complementary to teeth. Elemental (C, P, Ca, Sr) and isotopic (n(87Sr)/n(86Sr)) imaging were accomplished via laser ablation (LA) coupled in a split stream to a quadrupole inductively coupled plasma mass spectrometer (ICP-QMS) and a multicollector inductively coupled plasma mass spectrometer (MC ICP-MS) (abbreviation for the combined method LASS ICP-QMS/MC ICP-MS). Biogenic areas on the bone cross section, which remained unaltered by diagenetic processes, were localized using chemical indicators (I(C)/I(Ca) and I(C) × 10/I(P) intensity ratios) and NIR-HSI at a wavelength of 1410 nm to identify preserved collagen. The n(87Sr)/n(86Sr) isotope signature analyzed in these areas was in agreement with the biogenic bulk signal revealed by solubility profiling used as an independent method for validation. Elevated C intensities in the outer rim of the bone, caused by either precipitated secondary minerals or adsorbed humic materials, could be identified as indication for diagenetic alteration. These areas also show a different n(87Sr)/n(86Sr) isotopic composition. Therefore, the combination of NIR-HSI and LASS ICP-QMS/MC ICP-MS allows for the determination of preserved biogenic n(87Sr)/n(86Sr) isotope-amount ratios, if the original biogenic material has not been entirely replaced by diagenetic material.

Graphical abstract

Keywords

Diagenesis LASS ICP-QMS/MC ICP-MS Near-infrared hyperspectral imaging Human bone remains 

Abbreviations

ICP-QMS

Inductively coupled plasma quadrupole mass spectrometer

LA

Laser ablation

LASS ICP-QMS/MC ICP-MS

Laser ablation coupled via a split stream to a quadrupole inductively coupled plasma mass spectrometer and a multicollector inductively coupled plasma mass spectrometer

MC ICP-MS

Multicollector inductively coupled plasma mass spectrometer

NIR

Near-infrared

NIR-HSI

Near-infrared hyperspectral imaging

PCA

Principal component analysis

ROI

Region of interest

Notes

Acknowledgments

The authors would like to acknowledge Maria Teschler-Nicola as former director of the Department of Anthropology at the Museum of Natural History, Vienna, who permitted the use and selected the human femur samples of this study in 2015. The authors would like to acknowledge Barbara Hinterstoisser from the University of Natural Resources and Life Sciences (Vienna, Austria) for enabling access to the NIR-HSI instrument. Very warm thanks to Ferenc Firtha from Szent Istvan University (Budapest, Hungary), who provided us with his expertise in NIR-HSI measurements/setup, who placed his software tools (Cubrowser, Argus) at our disposal and taught us how to use it. Furthermore, the authors would like to acknowledge the two anonymous reviewers for their positive and constructive feedback, which helped to improve this manuscript. Finally, we would like to thank Melanie Diesner and Tine Opper (VIRIS Laboratory) for their support in the lab.

Funding information

This project was supported by the COMET-K1 competence center FFoQSI. The COMET-K1 competence center FFoQSI is funded by the Austrian ministries BMVIT, BMDW, and the Austrian provinces Niederoesterreich, Upper Austria, and Vienna within the scope of COMET - Competence Centers for Excellent Technologies. The program COMET is handled by the Austrian Research Promotion Agency FFG. We acknowledge the ERASMUS+ program for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1489_MOESM1_ESM.pdf (573 kb)
ESM 1 (PDF 572 kb)

References

  1. 1.
    Bentley RA. Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory. 2006;13(3):135–87.Google Scholar
  2. 2.
    Slovak NM, Paytan A. Applications of Sr isotopes in archaeology. In: Baskaran M, editor. Handbook of environmental isotope geochemistry, vol. I. Berlin, Heidelberg: Springer; 2012. p. 743–68.  https://doi.org/10.1007/978-3-642-10637-8_35.Google Scholar
  3. 3.
    Szostek K, Mądrzyk K, Cienkosz-Stepańczak B. Strontium isotopes as an indicator of human migration—easy questions, difficult answers. Anthropol Rev. 2015;78(2):133–56.  https://doi.org/10.1515/anre-2015-0010.Google Scholar
  4. 4.
    Sehrawat JS, Kaur J. Role of stable isotope analyses in reconstructing past life-histories and the provenancing human skeletal remains: a review. Anthropol Rev. 2017;80(3):243–58.  https://doi.org/10.1515/anre-2017-0017.Google Scholar
  5. 5.
    Prohaska T, Latkoczy C, Schultheis G, Teschler-Nicola M, Stingeder G. Investigation of Sr isotope ratios in prehistoric human bones and teeth using laser ablation ICP-MS and ICP-MS after Rb/Sr separation. J Anal At Spectrom. 2002;17(8):887–91.  https://doi.org/10.1039/b203314c.Google Scholar
  6. 6.
    Prohaska T, Teschler-Nicola M, Galler G, Přichystal A, Stingeder G, Jelenc M, et al. Non-destructive determination of 87Sr/86Sr isotope ratios in early upper Paleolithic human teeth from the Mladeč caves—preliminary results. In: Teschler-Nicola M, editor. Early modern humans at the Moravian Gate. Vienna: Springer-Verlag; 2006. p. 505–14.  https://doi.org/10.1007/978-3-211-49294-9_18.Google Scholar
  7. 7.
    Horstwood MSA, Evans JA, Montgomery J. Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel. Geochim Cosmochim Acta. 2008;72(23):5659–74.  https://doi.org/10.1016/j.gca.2008.08.016.Google Scholar
  8. 8.
    Simonetti A, Buzon MR, Creaser RA. In-situ elemental and Sr isotope investigation of human tooth enamel by laser ablation-(MC)-ICP-MS: successes and pitfalls. Archaeometry. 2008;50(2):371–85.  https://doi.org/10.1111/j.1475-4754.2007.00351.x.Google Scholar
  9. 9.
    Copeland SR, Sponheimer M, Lee-Thorp JA, le Roux PJ, de Ruiter DJ, Richards MP. Strontium isotope ratios in fossil teeth from South Africa: assessing laser ablation MC-ICP-MS analysis and the extent of diagenesis. J Archaeol Sci. 2010;37(7):1437–46.  https://doi.org/10.1016/j.jas.2010.01.003.Google Scholar
  10. 10.
    Montgomery J, Evans JA, Horstwood MSA. Evidence for long-term averaging of strontium in bovine enamel using TIMS and LA-MC-ICP-MS strontium isotope intra-molar profiles. Environ Archaeol. 2010;15(1):32–42.  https://doi.org/10.1179/146141010x12640787648694.Google Scholar
  11. 11.
    Le Roux PJ, Lee-Thorp JA, Copeland SR, Sponheimer M, de Ruiter DJ. Strontium isotope analysis of curved tooth enamel surfaces by laser-ablation multi-collector ICP-MS. Palaeogeogr Palaeoclimatol Palaeoecol. 2014;416:142–9.  https://doi.org/10.1016/j.palaeo.2014.09.007.Google Scholar
  12. 12.
    Lewis J, Coath CD, Pike AWG. An improved protocol for 87Sr/86Sr by laser ablation multi-collector inductively coupled plasma mass spectrometry using oxide reduction and a customised plasma interface. Chem Geol. 2014;390:173–81.  https://doi.org/10.1016/j.chemgeo.2014.10.021.Google Scholar
  13. 13.
    Capo RC, Stewart BW, Chadwick OA. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma. 1998;82:197–225.Google Scholar
  14. 14.
    Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom. 2011;25(17):2538–60.  https://doi.org/10.1002/rcm.5129.Google Scholar
  15. 15.
    Blum JD, Taliaferro EH, Weisse MT, HR T. Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between two forest ecosystems in the northeastern USA. Biogeochemistry. 2000;49:87–101.Google Scholar
  16. 16.
    Sealy JC, van der Merwe NJ, Sillen A, Kruger FJ, Krueger HW. 87Sr86Sr as a dietary indicator in modern and archaeological bone. J Archaeol Sci. 1991;18(3):399–416.  https://doi.org/10.1016/0305-4403(91)90074-Y.Google Scholar
  17. 17.
    Grupe G, Price TD, Schröter P, Söllner F, Johnson CM, Beard BL. Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: a study of southern Bavarian skeletal remains. Appl Geochem. 1997;12:517–25.Google Scholar
  18. 18.
    Lee-Thorp J, Sponheimer M. Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. J Anthropol Archaeol. 2003;22(3):208–16.  https://doi.org/10.1016/s0278-4165(03)00035-7.Google Scholar
  19. 19.
    Schweissing MM, Grupe G. Stable strontium isotopes in human teeth and bone: a key to migration events of the late Roman period in Bavaria. J Archaeol Sci. 2003;30(11):1373–83.  https://doi.org/10.1016/S0305-4403(03)00025-6.Google Scholar
  20. 20.
    Tütken T, Vennemann TW, Pfretzschner H-U. Nd and Sr isotope compositions in modern and fossil bones—proxies for vertebrate provenance and taphonomy. Geochim Cosmochim Acta. 2011;75(20):5951–70.  https://doi.org/10.1016/j.gca.2011.07.024.Google Scholar
  21. 21.
    Ortega LA, Guede I, Zuluaga MC, Alonso-Olazabal A, Murelaga X, Niso J, et al. Strontium isotopes of human remains from the San Martín de Dulantzi graveyard (Alegría-Dulantzi, Álava) and population mobility in the Early Middle Ages. Quat Int. 2013;303:54–63.  https://doi.org/10.1016/j.quaint.2013.02.008.Google Scholar
  22. 22.
    Hoogewerff J, Papesch W, Kralik M, Berner M, Vroon P, Miesbauer H, et al. The last domicile of the iceman from Hauslabjoch: a geochemical approach using Sr, C and O isotopes and trace element signatures. J Archaeol Sci. 2001;28(9):983–9.  https://doi.org/10.1006/jasc.2001.0659.Google Scholar
  23. 23.
    Wilson L, Pollard M. Here today, gone tomorrow? Integrated experimentation and geochemical modeling in studies of archaeological diagenetic change. Acc Chem Res. 2002;35(8):644–51.Google Scholar
  24. 24.
    Nelson B, Deniro MJ, Schoeninger MJ, De Paolo DJ. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochim Cosmochim Acta. 1986;50:1941.Google Scholar
  25. 25.
    Kohn MJ, Schoeninger MJ, Barker WW. Altered states: effects of diagenesis on fossil tooth chemistry. Geochim Cosmochim Acta. 1999;63(18):2737–47.Google Scholar
  26. 26.
    Nielsen-Marsh CM, Hedges REM. Patterns of diagenesis in bone I: the effects of site environments. J Archaeol Sci. 2000;27(12):1139–50.  https://doi.org/10.1006/jasc.1999.0537.Google Scholar
  27. 27.
    Hoppe KA, Koch PL, Furutani TT. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. Int J Osteoarchaeol. 2003;13(1–2):20–8.  https://doi.org/10.1002/oa.663.Google Scholar
  28. 28.
    Kyle JH. Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth—the implications for palaeodietary research. J Archaeol Sci. 1986;13(5):403–16.  https://doi.org/10.1016/0305-4403(86)90011-7.Google Scholar
  29. 29.
    Driessens FCM, Verbeeck RK. Biominerals. Boca Raton: CRC Press; 1990.Google Scholar
  30. 30.
    Lambert JB, Xue L, Buikstra JE. Physical removal of contaminative inorganic material from buried human bone. J Archaeol Sci. 1989;16(4):427–36.  https://doi.org/10.1016/0305-4403(89)90017-4.Google Scholar
  31. 31.
    Price TD, Blitz J, Burton J, Ezzo JA. Diagenesis in prehistoric bone: problems and solutions. J Archaeol Sci. 1992;19(5):513–29.Google Scholar
  32. 32.
    Sillen A. Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils of the Omo Shungura Formation. Paleobiology. 1986;12(3):311–23.Google Scholar
  33. 33.
    Reynard B, Balter V. Trace elements and their isotopes in bones and teeth: diet, environments, diagenesis, and dating of archeological and paleontological samples. Palaeogeogr Palaeoclimatol Palaeoecol. 2014;416:4–16.  https://doi.org/10.1016/j.palaeo.2014.07.038.Google Scholar
  34. 34.
    Trueman CN, Palmer MR, Field J, Privat K, Ludgate N, Chavagnac V, et al. Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. Comptes Rendus Palevol. 2008;7(2):145–58.  https://doi.org/10.1016/j.crpv.2008.02.006.Google Scholar
  35. 35.
    Koenig AE, Rogers RR, Trueman CN. Visualizing fossilization using laser ablation–inductively coupled plasma–mass spectrometry maps of trace elements in Late Cretaceous bones. Geology. 2009;37(6):511–4.  https://doi.org/10.1130/G25551A.1.Google Scholar
  36. 36.
    Fernandes R, Hüls M, Nadeau M-J, Grootes PM, Garbe-Schönberg CD, Hollund HI, et al. Assessing screening criteria for the radiocarbon dating of bone mineral. Nucl Inst Methods Phys Res B. 2013;294(Supplement C):226–32.  https://doi.org/10.1016/j.nimb.2012.03.032.Google Scholar
  37. 37.
    Benson A, Kinsley L, Willmes M, Defleur A, Kokkonen H, Mussi M, et al. Laser ablation depth profiling of U-series and Sr isotopes in human fossils. J Archaeol Sci. 2013;40(7):2991–3000.  https://doi.org/10.1016/j.jas.2013.02.028.Google Scholar
  38. 38.
    Willmes M, Kinsley L, Moncel MH, Armstrong RA, Aubert M, Eggins S, et al. Improvement of laser ablation in situ micro-analysis to identify diagenetic alteration and measure strontium isotope ratios in fossil human teeth. J Archaeol Sci. 2016;70:102–16.  https://doi.org/10.1016/j.jas.2016.04.017.Google Scholar
  39. 39.
    Shemesh A. Crystallinity and diagenesis of sedimentary apatites. Geochim Cosmochim Acta. 1990;54(9):2433–8.Google Scholar
  40. 40.
    Weiner S, Bar-Yosef O. States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci. 1990;17(2):187–96.  https://doi.org/10.1016/0305-4403(90)90058-D.Google Scholar
  41. 41.
    Greene EF, Tauch S, Webb E, Amarasiriwardena D. Application of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) for the identification of potential diagenesis and crystallinity changes in teeth. Microchem J. 2004;76(1):141–9.  https://doi.org/10.1016/j.microc.2003.11.006.Google Scholar
  42. 42.
    Fernández-Jalvo Y, Andrews P, Pesquero D, Smith C, Marín-Monfort D, Sánchez B, et al. Early bone diagenesis in temperate environments. Palaeogeogr Palaeoclimatol Palaeoecol. 2010;288(1–4):62–81.  https://doi.org/10.1016/j.palaeo.2009.12.016.Google Scholar
  43. 43.
    Patonai Z, Maasz G, Avar P, Schmidt J, Lorand T, Bajnoczky I, et al. Novel dating method to distinguish between forensic and archeological human skeletal remains by bone mineralization indexes. Int J Legal Med. 2012;127(2):529–33.  https://doi.org/10.1007/s00414-012-0785-4.Google Scholar
  44. 44.
    Gutierrez MA. Bone diagenesis and taphonomic history of the Paso Otero 1 Bone Bed, Pampas of Argentina. J Archaeol Sci. 2001;28(12):1277–90.  https://doi.org/10.1006/jasc.2000.0648.Google Scholar
  45. 45.
    Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM. Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res. 2009;18(6):1005–11.  https://doi.org/10.1359/jbmr.2003.18.6.1005.Google Scholar
  46. 46.
    Longato S, Woss C, Hatzer-Grubwieser P, Bauer C, Parson W, Unterberger SH, et al. Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping. Anal Methods. 2015;7(7):2917–27.  https://doi.org/10.1039/c4ay02943g.Google Scholar
  47. 47.
    Woess C, Unterberger SH, Roider C, Ritsch-Marte M, Pemberger N, Cemper-Kiesslich J, et al. Assessing various infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains. PLoS One. 2017;12(3):e0174552.  https://doi.org/10.1371/journal.pone.0174552.Google Scholar
  48. 48.
    Stathopoulou ET, Psycharis V, Chryssikos GD, Gionis V, Theodorou G. Bone diagenesis: new data from infrared spectroscopy and X-ray diffraction. Palaeogeogr Palaeoclimatol Palaeoecol. 2008;266(3–4):168–74.  https://doi.org/10.1016/j.palaeo.2008.03.022.Google Scholar
  49. 49.
    Thomas D, McGoverin C, Chinsamy A, Manley M. Near infrared analysis of fossil bone from the Western Cape of South Africa. J Near Infrared Spectrosc. 2011;19(3):151–9.Google Scholar
  50. 50.
    Linderholm J, Fernández Pierna J, Vincke D, Dardenne P, Baeten V. Identification of fragmented bones and their state of preservation by using near infrared hyperspectral image analysis. J Near Infrared Spectrosc. 2013;21(6):459.  https://doi.org/10.1255/jnirs.1082.Google Scholar
  51. 51.
    Vincke D, Miller R, Stassart E, Otte M, Dardenne P, Collins M, et al. Analysis of collagen preservation in bones recovered in archaeological contexts using NIR hyperspectral imaging. Talanta. 2014;125:181–8.  https://doi.org/10.1016/j.talanta.2014.02.044.Google Scholar
  52. 52.
    Koehler FW, Lee IE, Kidder LH, Lewis EN. Near infrared spectroscopy: the practical chemical imaging solution. Spectrosc Eur. 2002;14(3).Google Scholar
  53. 53.
    Doneus M, Verhoeven G, Atzberger C, Wess M, Ruš M. New ways to extract archaeological information from hyperspectral pixels. J Archaeol Sci. 2014;52:84–96.  https://doi.org/10.1016/j.jas.2014.08.023.Google Scholar
  54. 54.
    ElMasry G, Sun D-W. CHAPTER 1 - principles of hyperspectral imaging technology. In: Sun D-W, editor. Hyperspectral imaging for food quality analysis and control. San Diego: Academic; 2010. p. 3–43.  https://doi.org/10.1016/B978-0-12-374753-2.10001-2.Google Scholar
  55. 55.
    Firtha F. Argus hyperspectral acquisition software. 2010.Google Scholar
  56. 56.
    Prohaska T, Irrgeher J, Zitek A. Simultaneous multi-element and isotope ratio imaging of fish otoliths by laser ablation split stream ICP-MS/MC ICP-MS. J Anal At Spectrom. 2016;31(8):1612–21.  https://doi.org/10.1039/c6ja00087h.Google Scholar
  57. 57.
    Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl Chem. 2014;86(3):425–67.  https://doi.org/10.1515/pac-2013-1023.Google Scholar
  58. 58.
    Galler P, Limbeck A, Boulyga SF, Stingeder G, Hirata T, Prohaska T. Development of an on-line flow injection Sr/ matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry. Anal Chem. 2007;79:5023–9.Google Scholar
  59. 59.
    Galler P, Limbeck A, Uveges M, Prohaska T. Automation and miniaturization of an on-line flow injection Sr/matrix separation method for accurate, high throughput determination of Sr isotope ratios by MC-ICP-MS. J Anal At Spectrom. 2008;23(10):1388.  https://doi.org/10.1039/b803964j.Google Scholar
  60. 60.
    Romaniello SJ, Field MP, Smith HB, Gordon GW, Kim MH, Anbar AD. Fully automated chromatographic purification of Sr and Ca for isotopic analysis. J Anal At Spectrom. 2015;30(9):1906–12.  https://doi.org/10.1039/c5ja00205b.Google Scholar
  61. 61.
    Woodhead J, Swearer S, Hergt J, Maas R. In situ Sr-isotope analysis of carbonates by LA-MC-ICP-MS: interference corrections, high spatial resolution and an example from otolith studies. J Anal At Spectrom. 2005;20(1):22.  https://doi.org/10.1039/b412730g.Google Scholar
  62. 62.
    Irrgeher J, Galler P, Prohask T. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: reconsidering matrix interferences in bioapatites and biogenic carbonates. Spectrochim Acta B. 2016;125:31–42.  https://doi.org/10.1016/j.sab.2016.09.008.Google Scholar
  63. 63.
    Draxler J, Zitek A, Meischel M, Stranzl-Tschegg SE, Mingler B, Martinelli E, et al. Regionalized quantitative LA-ICP-MS imaging of the biodegradation of magnesium alloys in bone tissue. J Anal At Spectrom. 2015.  https://doi.org/10.1039/C5JA00354G10.1039/c5ja00354g.
  64. 64.
    Zitek A, Aleon J, Prohaska T. CHAPTER 9 chemical imaging. In: Prohaska T, Irrgeher J, Zitek A, Jakubowski N, editors. Sector field mass spectrometry for elemental and isotopic analysis: The Royal Society of Chemistry; 2015. p. 152–82.  https://doi.org/10.1039/9781849735407-00152.
  65. 65.
    Schultheiss G. Analysis of isotope ratios in anthropological and archaeological samples by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Vienna: University of Natural Resources and Life Sciences; 2003.Google Scholar
  66. 66.
    Theiner S. The use of strontium isotope ratio measurements by MC-ICP-MS for fundamental studies on diagenesis and for the reconstruction of animal migration at the Celtic excavation site Roseldorf Diplomarbeit. Vienna: University of Vienna; 2011.Google Scholar
  67. 67.
    Swoboda S, Brunner M, Boulyga SF, Galler P, Horacek M, Prohaska T. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS. Anal Bioanal Chem. 2008;390(2):487–94.  https://doi.org/10.1007/s00216-007-1582-7.Google Scholar
  68. 68.
    Irrgeher J, Teschler-Nicola M, Leutgeb K, Weiß C, Kern D, Prohaska T. Migration and mobility in the latest Neolithic of the Traisen Valley, Lower Austria: Sr isotope analysis. In: Kaiser E, Burger J, Schier W, editors. Population dynamics in prehistory and early history. New approaches by using stable isotopes and genetics, vol. 5. Berlin, Boston: De Gruyter; 2012. p. 213–26.  https://doi.org/10.1515/9783110266306.Google Scholar
  69. 69.
    Retzmann A, Zimmermann T, Pröfrock D, Prohaska T, Irrgeher J. A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA resin for the isotopic analysis of marine sediments. Anal Bioanal Chem. 2017;409(23):5463–80.  https://doi.org/10.1007/s00216-017-0468-6.Google Scholar
  70. 70.
    Irrgeher J, Prohaska T, Sturgeon RE, Mester Z, Yang L. Determination of strontium isotope amount ratios in biological tissues using MC-ICPMS. Anal Methods. 2013;5(7):1687.  https://doi.org/10.1039/c3ay00028a.Google Scholar
  71. 71.
    Horsky M, Irrgeher J, Prohaska T. Evaluation strategies and uncertainty calculation of isotope amount ratios measured by MC ICP-MS on the example of Sr. Anal Bioanal Chem. 2016;408(2):351–67.  https://doi.org/10.1007/s00216-015-9003-9.Google Scholar
  72. 72.
    Burton JH, Price TD, Middleton WD. Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. J Archaeol Sci. 1999;26(6):609–16.  https://doi.org/10.1006/jasc.1998.0378.Google Scholar
  73. 73.
    Osborne BG. Near-infrared spectroscopy in food analysis. In: Encyclopedia of analytical chemistry. Major reference works: Wiley; 2006. p. 1–14.  https://doi.org/10.1002/9780470027318.a1018.
  74. 74.
    Wopenka B, Pasteris JD. A mineralogical perspective on the apatite in bone. Mater Sci Eng C. 2005;25(2):131–43.  https://doi.org/10.1016/j.msec.2005.01.008.Google Scholar
  75. 75.
    White EM, Hannus LA. Chemical weathering of bone in archaeological soils. Am Antiq. 1983;48(2):316–22.Google Scholar
  76. 76.
    Tzaphlidou M, Zaichick V. Calcium, phosphorus, calcium-phosphorus ratio in rib bone of healthy humans. Biol Trace Elem Res. 2003;93(1):63–74.  https://doi.org/10.1385/BTER:93:1-3:63.Google Scholar
  77. 77.
    Keenan SW. From bone to fossil: a review of the diagenesis of bioapatite. Am Mineral. 2016;101(9):1943–51.  https://doi.org/10.2138/am-2016-5737.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anika Retzmann
    • 1
  • Magdalena Blanz
    • 2
    • 3
  • Andreas Zitek
    • 1
    • 4
  • Johanna Irrgeher
    • 1
    • 5
  • Jörg Feldmann
    • 3
  • Maria Teschler-Nicola
    • 6
    • 7
  • Thomas Prohaska
    • 1
    • 8
    Email author
  1. 1.Department of Chemistry, Division of Analytical Chemistry, VIRIS LaboratoryUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
  2. 2.Archaeology InstituteUniversity of the Highlands and IslandsKirkwallUK
  3. 3.College of Physical Sciences, Department of Chemistry, Trace Element Speciation Laboratory Aberdeen (TESLA)University of AberdeenAberdeenUK
  4. 4.FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbHTullnAustria
  5. 5.Institute of Coastal Research, Marine Bioanalytical ChemistryHelmholtz-Zentrum GeesthachtGeesthachtGermany
  6. 6.Department of AnthropologyMuseum of Natural HistoryViennaAustria
  7. 7.Department of Evolutionary AnthropologyUniversity of ViennaViennaAustria
  8. 8.Chair of General and Analytical ChemistryMontanuniversität LeobenLeobenAustria

Personalised recommendations