Analytical and Bioanalytical Chemistry

, Volume 411, Issue 7, pp 1319–1330 | Cite as

Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP

  • Sathya Srinivasan
  • Velu Ranganathan
  • Maria C. DeRosaEmail author
  • Bhaskar Mohan MurariEmail author
Research Paper


Two fluorescent aptasensor methods were developed for the detection of ATP in biochemical systems. The first method consisted of a label-free fluorescent “turn-on” approach using a guanine-rich ATP aptamer sequence and the DNA-binding agent berberine complex. In the presence of ATP, the ATP preferentially binds with its aptamer and conformationally changes into a G-quadruplex structure. The association of berberine with the G-quadruplex results in the enhancement of the fluorescence signal of the former. The detection limit of ATP was found to be 3.5 μM. Fluorescence, circular dichroism and melting temperature (Tm) experiments were carried out to confirm the binding specificity and structural changes. The second method employs the ratiometric fluorescent approach based on the Forster resonance energy transfer (FRET) for the detection of ATP using berberine along with a quencher (AuNRs, AgNPs) and a fluorophore (red quantum dots (RQDs), carbon dots (CDs)) labeled at 5′ and 3′ termini of the ATP-binding aptamer sequence. Upon addition of ATP and berberine, ATP specifically binds with its aptamer leading to the formation of G-quadruplex, and similarly, berberine also binds to the G-quadruplex. This leads to an enhancement of fluorescence of berberine while that of RQD and CDs were significantly quenched via FRET. The respective detection limits calculated were 3.6 μM and 3.8 μM, indicating these fluorescent aptasensor methods may be used for a wide variety of small molecules.

Graphical abstract


Adenosine-5′-triphosphate FRET Gold nanorods Fluorescence Berberine Aptasensor 


Funding information

This work was financially supported by the Natural Sciences and Engineering Research Council of Canada.

Compliance with ethical standards

The human serum samples used were pooled human samples obtained under informed consent (Millipore). All experiments were performed in accordance with the policies of Carleton University.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1484_MOESM1_ESM.pdf (1.5 mb)
ESM 1 (PDF 1554 kb)


  1. 1.
    Pérez-Ruiz T, Martínez-Lozano C, Tomás V, Martín J. Determination of ATP via the photochemical generation of hydrogen peroxide using flow injection luminol chemiluminescence detection. Anal Bioanal Chem. 2003;377(1):189–94.CrossRefGoogle Scholar
  2. 2.
    Zheng D, Seferos DS, Giljohann D a, Patel PC, Mirkin C a. Aptamer nano-flares for molecular detection in living cells. Nano Lett 2009;9(9):3258–3261.Google Scholar
  3. 3.
    Ishida A, Yamada Y, Kamidate T. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation. Anal Bioanal Chem. 2008;392(5):987–94.CrossRefGoogle Scholar
  4. 4.
    Huang CC, Chiu SH, Huang YF, Chang HT. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Anal Chem. 2007;79(13):4798–804.CrossRefGoogle Scholar
  5. 5.
    Davis G, Green MJ, Hill HAO. Detection of ATP and creatine kinase using an enzyme electrode. Enzym Microb Technol. 1986;8(6):349–52.CrossRefGoogle Scholar
  6. 6.
    Mora L, Hernández-Cázares AS, Aristoy MC, Toldrá F. Hydrophilic interaction chromatographic determination of adenosine triphosphate and its metabolites. Food Chem. 2010;123(4):1282–8. Scholar
  7. 7.
    Huang Z, Szostak JW. Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer. RNA. 2003;9(12):1456–63.CrossRefGoogle Scholar
  8. 8.
    Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45(9):1628–50.Google Scholar
  9. 9.
    Ellington A, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22.Google Scholar
  10. 10.
    Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science (80- ). 1990;249(4968):505–10.CrossRefGoogle Scholar
  11. 11.
    Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Anal Biochem. 2001;294(2):126–31.CrossRefGoogle Scholar
  12. 12.
    Salam F, Tothill IE. Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosens Bioelectron. 2009;24(8):2630–6.CrossRefGoogle Scholar
  13. 13.
    Patel JR, Bhagwat AA, Sanglay GC, Solomon MB. Rapid detection of Salmonella from hydrodynamic pressure-treated poultry using molecular beacon real-time PCR. Food Microbiol. 2006;23(1):39–46.CrossRefGoogle Scholar
  14. 14.
    Feng K, Kang Y, Zhao JJ, Liu YL, Jiang JH, Shen GL, et al. Electrochemical immunosensor with aptamer-based enzymatic amplification. Anal Biochem. 2008;378(1):38–42.CrossRefGoogle Scholar
  15. 15.
    Centi S, Tombelli S, Minunni M, Mascini M. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem. 2007;79(4):1466–73.CrossRefGoogle Scholar
  16. 16.
    Wang Y, Wang Y, Liu B. Fluorescent detection of ATP based on signaling DNA aptamer attached silica nanoparticles. Nanotechnology. 2008;19(41).Google Scholar
  17. 17.
    Chen Z, Li G, Zhang L, Jiang J, Li Z, Peng Z, et al. A new method for the detection of ATP using a quantum-dot-tagged aptamer. Anal Bioanal Chem. 2008;392(6):1185–8.CrossRefGoogle Scholar
  18. 18.
    Huo Y, Qi L, Lv XJ, Lai T, Zhang J, Zhang ZQ. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron. 2016;78:315–20.CrossRefGoogle Scholar
  19. 19.
    Wang J, Lu J, Su S, Gao J, Huang Q, Wang L, et al. Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles. Biosens Bioelectron. 2015;65:171–5. Scholar
  20. 20.
    Zeng X, Zhang X, Yang W, Jia H, Li Y. Fluorescence detection of adenosine triphosphate through an aptamer-molecular beacon multiple probe. Anal Biochem. 2012;424(1):8–11. Scholar
  21. 21.
    He F, Tang Y, Wang S, Li Y, Zhu D. Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection. J Am Chem Soc. 2005;127(35):12343–6.CrossRefGoogle Scholar
  22. 22.
    Guo JH, Zhu LN, Kong DM, Shen HX. Triphenylmethane dyes as fluorescent probes for G-quadruplex recognition. Talanta. 2009;80(2):607–13.CrossRefGoogle Scholar
  23. 23.
    Walmsley JA, Burnett JF. A new model for the K+−induced macromolecular structure of guanosine 5′-monophosphate in solution. Biochemistry. 1999;38(42):14063–8.CrossRefGoogle Scholar
  24. 24.
    Wang Y, Liu B. ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene. Analyst. 2008;133(11):1593–8.CrossRefGoogle Scholar
  25. 25.
    Zhao M, Liao L, Wu M, Lin Y, Xiao X, Nie C. Double-receptor sandwich supramolecule sensing method for the determination of ATP based on uranyl-salophen complex and aptamer. Biosens Bioelectron. 2012;34(1):106–11. Scholar
  26. 26.
    Liu H, Ma C, Ning F, Chen H, He H, Wang K, et al. A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP. Spectrochim Acta A Mol Biomol Spectrosc. 2017;175:164–7. Scholar
  27. 27.
    He HZ, Pui-Yan Ma V, Leung KH, Shiu-Hin Chan D, Yang H, Cheng Z, et al. A label-free G-quadruplex-based switch-on fluorescence assay for the selective detection of ATP. Analyst. 2012;137(7):1538–40.CrossRefGoogle Scholar
  28. 28.
    Fan J, Hu M, Zhan P, Peng X. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev. 2013;42(1):29–43.CrossRefGoogle Scholar
  29. 29.
    Lee MH, Kim JS, Sessler JL. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev. 2015;44(13):4185–91.CrossRefGoogle Scholar
  30. 30.
    Sun Y, Xun K, Wang Y, Chen X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs. 2009;20(9):757–69.CrossRefGoogle Scholar
  31. 31.
    Franceschin M, Rossetti L, D’Ambrosio A, Schirripa S, Bianco A, Ortaggi G, et al. Natural and synthetic G-quadruplex interactive berberine derivatives. Bioorganic Med Chem Lett. 2006;16(6):1707–11. Scholar
  32. 32.
    Ma Y, Ou TM, Tan JH, Hou JQ, Huang SL, Gu LQ, et al. Quinolino-benzo-[5, 6]-dihydroisoquindolium compounds derived from berberine: a new class of highly selective ligands for G-quadruplex DNA in c-myc oncogene. Eur J Med Chem. 2011;46(5):1906–13. Scholar
  33. 33.
    Bazzicalupi C, Ferraroni M, Bilia AR, Scheggi F, Gratteri P. The crystal structure of human telomeric DNA complexed with berberine: an interesting case of stacked ligand to G-tetrad ratio higher than 1:1. Nucleic Acids Res. 2013;41(1):632–8.CrossRefGoogle Scholar
  34. 34.
    Guo Y, Chen Y, Wei Y, Li H, Dong C. Label-free fluorescent aptasensor for potassium ion using structure-switching aptamers and berberine. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136(PC):1635–41. Scholar
  35. 35.
    Liu Y, Li B, Cheng D, Duan X. Simple and sensitive fluorescence sensor for detection of potassium ion in the presence of high concentration of sodium ion using berberine-G-quadruplex complex as sensing element. Microchem J. 2011;99(2):503–7. Scholar
  36. 36.
    Velu R, Frost N, DeRosa MC. Linkage inversion assembled nano-aptasensors (LIANAs) for turn-on fluorescence detection. Chem Commun. 2015;51(76):14346–9.CrossRefGoogle Scholar
  37. 37.
    Caswell KK, Wilson JN, Bunz UHF, Murphy CJ. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J Am Chem Soc. 2003;125(46):13914–5.CrossRefGoogle Scholar
  38. 38.
    Park J, Park Y, Kim S. Signal amplification via biological self-assembly of surface-engineered quantum dots for multiplexed subattomolar immunoassays and apoptosis imaging. ACS Nano. 2013;7(10):9416–27.CrossRefGoogle Scholar
  39. 39.
    Jin H, Nam J, Park J, Jung S, Im K, Hur J, et al. Strong polyelectrolyte quantum dot surface for stable bioconjugation and layer-by-layer assembly applications. Chem Commun. 2011;47(6):1758–60.CrossRefGoogle Scholar
  40. 40.
    McKeague M, Foster A, Miguel Y, Giamberardino A, Verdin C, Chan JYS, et al. Development of a DNA aptamer for direct and selective homocysteine detection in human serum. RSC Adv. 2013;3(46):24415–22.CrossRefGoogle Scholar
  41. 41.
    Karsisiotis AI, Hessari NMA, Novellino E, Spada GP, Randazzo A, Webba Da Silva M. Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism. Angew Chem Int Ed. 2011;50(45):10645–8.CrossRefGoogle Scholar
  42. 42.
    Risitano A, Fox KR. Influence of loop size on the stability of intramolecular DNA quadruplexes. Nucleic Acids Res. 2004;32(8):2598–606.CrossRefGoogle Scholar
  43. 43.
    Mergny JL, Phan AT, Lacroix L. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998;435(1):74–8.CrossRefGoogle Scholar
  44. 44.
    Ma K, Wang H, Li H, Wang S, Li X, Xu B, et al. A label-free aptasensor for turn-on fluorescent detection of ATP based on AIE-active probe and water-soluble carbon nanotubes. Sensors Actuators B Chem. 2016;230:556–8.CrossRefGoogle Scholar
  45. 45.
    Wang H, Peng P, Liu S, Li T. Thioflavin T behaves as an efficient fluorescent ligand for label-free ATP aptasensor. Anal Bioanal Chem. 2016;408(28):7927–34. Scholar
  46. 46.
    Cai L, Chen ZZ, Dong XM, Tang HW, Pang DW. Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter. Biosens Bioelectron. 2011;29(1):46–52. Scholar
  47. 47.
    Zhang Z, Sharon E, Freeman R, Liu X, Willner I. Fluorescence detection of DNA, adenosine-5′-triphosphate (ATP), and telomerase activity by zinc(II)-protoporphyrin IX/G-quadruplex labels. Anal Chem. 2012;84(11):4789–97.CrossRefGoogle Scholar
  48. 48.
    Lu L, Qian Y, Wang L, Ma K, Zhang Y. Metal-enhanced fluorescence-based core-shell Ag@SiO2nanoflares for affinity biosensing via target-induced structure switching of aptamer. ACS Appl Mater Interfaces. 2014;6(3):1944–50.CrossRefGoogle Scholar
  49. 49.
    Park JW, Park Y, Kim BH. Quencher-free molecular aptamer beacons (QF-MABs) for detection of ATP. Bioorganic Med Chem Lett. 2015;25(20):4597–600. Scholar
  50. 50.
    Garai-Ibabe G, Möller M, Saa L, Grinyte R, Pavlov V. Peroxidase-mimicking DNAzyme modulated growth of CdS nanocrystalline structures in situ through redox reaction: application to development of genosensors and aptasensors. Anal Chem. 2014;86(20):10059–64.CrossRefGoogle Scholar
  51. 51.
    Leung KH, Lu L, Wang M, Mak TY, Chan DSH, Tang FK, et al. A label-free luminescent switch-on assay for ATP using a G-quadruplex-selective iridium(III) complex. PLoS One. 2013;8(10):1–7.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyVIT VelloreVelloreIndia
  2. 2.Department of ChemistryCarleton UniversityOttawaCanada
  3. 3.Department of Sensor and Biomedical Technology, School of Electronics EngineeringVIT VelloreVelloreIndia

Personalised recommendations