Advertisement

Development of a low-cost electrochemical sensor based on babassu mesocarp (Orbignya phalerata) immobilized on a flexible gold electrode for applications in sensors for 5-fluorouracil chemotherapeutics

  • Paulo Ronaldo Sousa Teixeira
  • Ana Siqueira do Nascimento Marreiro Teixeira
  • Emanuel Airton de Oliveira Farias
  • Edson Cavalcanti da Silva Filho
  • Helder Nunes da Cunha
  • José Ribeiro dos Santos Júnior
  • Lívio César Cunha Nunes
  • Handerson Rodrigues Silva Lima
  • Carla Eiras
Research Paper
  • 24 Downloads

Abstract

There are increasing concerns regarding the risks arising from the contamination of manipulators of antineoplastic drugs promoted by occupational exposure or even in the dosage of drugs. The present work proposes the use of an electrochemical sensor based on a biopolymer extracted from the babassu coconut (Orbignya phalerata) for the determination of an antineoplastic 5-fluorouracil (5-FU) drug as an alternative for the monitoring of these drugs. In order to reduce the cost of this sensor, a flexible gold electrode (FEAu) is proposed. The surface modification of FEAu was performed with the deposition of a casting film of the biopolymer extracted from the babassu mesocarp (BM) and modified with phthalic anhydride (BMPA). The electrochemical activity of the modified electrode was characterized by cyclic voltammetry (CV), and its morphology was observed by atomic force microscopy (AFM). The FEAu/BMPA showed a high sensitivity (8.8 μA/μmol/L) and low limit of detection (0.34 μmol/L) for the 5-FU drug in an acid medium. Electrochemical sensors developed from the babassu mesocarp may be a viable alternative for the monitoring of the 5-FU antineoplastic in pharmaceutical formulations, because in addition to being sensitive to this drug, they are constructed of a natural polymer, renewable, and abundant in nature.

Graphical abstract

Keywords

Babassu mesocarp Flexible gold electrode Sensor 5-Fluorouracil Electrochemistry 

Notes

Acknowledgments

The authors would like to thank the Federal University of Piauí (UFPI) and Federal Institute of Piauí (IFPI) for providing the research and work facilities.

Funding information

This study received financial supports from the Coordination for the Improvement of Higher Education Personnel CAPES (Financing Code 001), National Council for Scientific and Technological Development (CNPq), and Foundation for Research Support of Piauí (FAPEPI).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Minoia C, Perbellini L. Monitoraggio ambientale e biologico dell’esposizione professionale a xenobiotici: chemoterapici antiblastici, vol. 3. Milano: Morgan; 2000. p. 265.Google Scholar
  2. 2.
    Connor TH, DeBord DG, Pretty JR, Oliver MS, Roth TS, Lees PSJ, et al. Evaluation of antineoplastic drug exposure of health care workers at three university-based US cancer centers. J Occup Environ Med. 2010.  https://doi.org/10.1097/JOM.0b013e3181f72b63.CrossRefGoogle Scholar
  3. 3.
    Valanis BG, Vollmer WM, Labuhn KT, Glass AG. Acute symptoms associated with antineoplastic drug handling among nurses. Cancer Nurs. 1993;16(4):288–95.CrossRefGoogle Scholar
  4. 4.
    McDiarmid MA, Oliver MS, Roth TS, Rogers B, Escalante C. Chromosome 5 and 7 abnormalities in oncology personnel handling anticancer drugs. J Occup Environ Med. 2010.  https://doi.org/10.1097/JOM.0b013e3181f73ae6.CrossRefGoogle Scholar
  5. 5.
    Lawson CC, Rocheleau CM, Whelan EA, Lividoti Hibert EN, Grajewski B, Spiegelman D, et al. Occupational exposures among nurses and risk of spontaneous abortion. Am J Obstet Gynecol. 2012.  https://doi.org/10.1016/j.ajog.2011.12.030.CrossRefGoogle Scholar
  6. 6.
    Fransman W, Peelen S, Hilhorst S, Roeleveld N, Heederik D, Kromhout H. A pooled analysis to study trends in exposure to antineoplastic drugs among nurses. Ann Occup Hyg. 2007.  https://doi.org/10.1093/annhyg/mel081.
  7. 7.
    Skov T, Maarup B, Olsen J, Rorth M, Winthereik H, Lynge E. Leukaemia and reproductive outcome among nurses handling antineoplastic drugs. Br J Ind Med. 1992;49(12):855–61.Google Scholar
  8. 8.
    Ratner PA, Spinelli JJ, Beking K, Lorenzi M, Chow Y, Teschke K, et al. Cancer incidence and adverse pregnancy outcome in registered nurses potentially exposed to antineoplastic drugs. BMC Nurs. 2010.  https://doi.org/10.1186/1472-6955-9-15.
  9. 9.
    Martins I, Della Rosa HV. Considerações toxicológicas da exposição ocupacional aos fármacos antineoplásicos. Rev Bras Med Trab. 2004;2(2):118–25.Google Scholar
  10. 10.
    Clark JC, McGee RF. Enfermagem oncológica: um curriculum básico. 2ª ed. Trad. de Luciane Kalakum e Luiza Maria Gerhardt Porto Alegre: Artes Médicas; 1997.Google Scholar
  11. 11.
    Cai C, Zhou K, Wu Y, Wu L. Enhanced liver targeting of 5-fluorouracil using galactosylated human serum albumin as a carrier molecule. J Drug Target. 2006.  https://doi.org/10.1080/10611860600613324.CrossRefGoogle Scholar
  12. 12.
    Straub JO. Combined environmental risk assessment for 5-fluorouracil and capecitabine in Europe. Integr Environ Assess Manag. 2010.  https://doi.org/10.1897/IEAM_2009-073.1.CrossRefGoogle Scholar
  13. 13.
    Cao S, Rustum YM. Synergistic antitumor activity of irinotecan in coBMinationwith 5-fluorouracil in rats bearing advanced colorectal cancer: role of drug sequence and dose. Cancer Res. 2000;60(14):3717–21.Google Scholar
  14. 14.
    Hutchins LF, Green SJ, Ravdin PM. Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: treatment results of Intergroup Protocol INT-0102. J Clin Oncol. 2005.  https://doi.org/10.1200/JCO.2005.08.071.CrossRefGoogle Scholar
  15. 15.
    Gu Y, Lu R, Si D, Liu C. Determination of 5-fluorouracil in human plasma by high-performance liquid chromatography (HPLC). J Chromatogr B Biomed Sci Appl. 1999;735(2):293–7.CrossRefGoogle Scholar
  16. 16.
    Katzung BG. Farmacologia básica e clínica. 10.ed. São Paulo: McGraw-Hill; 2007.Google Scholar
  17. 17.
    Stringer AM, Gibson RJ, Bowen JM, Keefe DM. Chemoterapy-induced modifications to gastrointestinal microflora: evidence and implications of change. Curr Drug Metab. 2009.  https://doi.org/10.2174/138920009787048419.CrossRefGoogle Scholar
  18. 18.
    Savva-Bordalo J, Carvalho JR, Pinheiro M, Costa VL, Rodrigues A, Dias PC, et al. Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients. BMC Cancer. 2010.  https://doi.org/10.1186/1471-2407-10-470.
  19. 19.
    Amer MM, Hassan SSM, Abd EL-Fatah SA, El-Kosasy AM. Spectrophotometric and spectrofluorimetric determination of fluorouracil in the presence of its degradation products. J Pharm Pharmacol. 2011.  https://doi.org/10.1111/j.2042-7158.1998.tb06167.x.CrossRefGoogle Scholar
  20. 20.
    Stuart F, Alan DG, Chetan S, Paul M, Frank EI, John M. Detection of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy. Vib Spectrosc. 2004.  https://doi.org/10.1002/jrs.1277.CrossRefGoogle Scholar
  21. 21.
    Procházková A, Liu S, Friess H, Aebi S, Thormann W. Determination of 5-fluorouracil and 5-fluoro-2′-deoxyuridine-5′-monophosphate in pancreatic cancer cell line and other biological materials using capillary electrophoresis. J Chromatogr A. 2001.  https://doi.org/10.1016/S0021-9673(00)01171-7.CrossRefGoogle Scholar
  22. 22.
    Chen W, Shen Y, Rong H, Lei L, Guo S. Development and application of a validated gradient elution HPLC method for simultaneous determination of 5-fluorouracil and paclitaxel in dissolution samples of 5-fluorouracil/paclitaxel-co-eluting stents. J Pharm Biomed Anal. 2012.  https://doi.org/10.1016/j.jpba.2011.10.005.CrossRefGoogle Scholar
  23. 23.
    Yamada Y, Hamaguchi T, Goto M, Muro K, Matsumura Y, Shimada Y, et al. Plasma concentrations of 5-fluorouracil and F-beta-alanine following oral administration of S-1, a dihydropyrimidine dehydrogenase inhibitory fluoropyrimidine, as compared with protracted venous infusion of 5-fluorouracil. Br J Cancer. 2003;89(5):816–20.CrossRefGoogle Scholar
  24. 24.
    Lowinsohn D, Bertotti M. Sensores eletroquímicos: considerações sobre mecanismo de funcionamento e aplicações no monitoramento de espécies químicas em ambientes microscópicos. Quím Nova. 2006.  https://doi.org/10.1590/S0100-40422006000600029.CrossRefGoogle Scholar
  25. 25.
    Janata J. Electrochemical sensors and their impedances: a tutorial. Crit Rev Anal Chem. 2010.  https://doi.org/10.1080/10408340290765470.CrossRefGoogle Scholar
  26. 26.
    Wang J. Analytical electrochemistry. 2nd ed. New York: John Wiley & Sons, Inc.; 2000.CrossRefGoogle Scholar
  27. 27.
    Shaidarova LG, Budnikov GK. Chemically modified electrodes based on noble metals, polymer films, or their composites in organic voltammetry. J Anal Chem. 2008.  https://doi.org/10.1134/S106193480810002X.CrossRefGoogle Scholar
  28. 28.
    Vieira AP, Santana SAA, Bezerra CWB, Silva HAS, Chaves JAP, Melo JCP, et al. Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. J Hazard Mater. 2009.  https://doi.org/10.1016/j.jhazmat.2008.12.043.CrossRefGoogle Scholar
  29. 29.
    Almeida RR, Almeida RR, Lacerdab LG, Murakamib FSC, Bannachd G, Demiatea IM, et al. Thermal analysis as a screening technique for the characterization of babassu flour and its solid fractions after acid and enzymatic hydrolysis. Thermochim Acta. 2011.  https://doi.org/10.1016/j.tca.2011.02.029.CrossRefGoogle Scholar
  30. 30.
    Liu Y, Danielsson B. Rapid high throughput assay for fluorimetric detection of doxorubicin-application of nucleic acid-dye bioprobe. Anal Chim Acta. 2007.  https://doi.org/10.1016/j.aca.2007.01.013.CrossRefGoogle Scholar
  31. 31.
    Teixeira PRS, Teixeira ASNM, Farias EAO, Silva DA, Nunes LCC, Leite CMS, et al. Chemically modified babassu coconut (Orbignya sp.) biopolymer: characterization and development of a thin film for its application in electrochemical sensors. J Polym Res. 2008.  https://doi.org/10.1007/s10965-018-1520-8.
  32. 32.
    Farias EAO, Nogueira SS, Oliveira AMF, Oliveira MS, Soares MFC, Cunha HN, et al. A thin PANI and carrageenan-gold nanoparticle film on a flexible gold electrode as a conductive and low-cost platform for sensing in a physiological environment. J Mater Sci. 2017.  https://doi.org/10.1007/s10853-017-1438-2.CrossRefGoogle Scholar
  33. 33.
    Melo SM, Castro RM, Álvarez NS, Ordieres AJM, Junior JRS, Fonseca RAS, et al. Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms. Anal Chem. 2015.  https://doi.org/10.1021/acs.analchem.5b02271.CrossRefGoogle Scholar
  34. 34.
    Teixeira PRS, Marreiro ASM, Farias EAO, Dionisio NA, Silva Filho EC, Eiras C. Layer-by-layer hybrid films of phosphate cellulose and electroactive polymer as chromium (VI) sensors. J Solid State Electrochem. 2015.  https://doi.org/10.1007/s10008-015-2839-2.CrossRefGoogle Scholar
  35. 35.
    Burke LD, Nugent PF. The electrochemistry of gold: I the redox behavior of the metal in aqueous media. Gold Bull. 1997.  https://doi.org/10.1007/BF03214756.CrossRefGoogle Scholar
  36. 36.
    Wang Y, Laborda E, Crossley A, Compton RG. Surface oxidation of gold nanoparticles supported on a glassy carbon electrode in sulphuric acid medium: contrasts with the behavior of ‘macro’ gold. Phys Chem Chem Phys. 2013.  https://doi.org/10.1039/C3CP44615H.CrossRefGoogle Scholar
  37. 37.
    Bard AJ, Faulkner LR. Electrochemical methods fundamentals and applications. New York: Wiley; 2011.Google Scholar
  38. 38.
    Bukkitgar SD, Shetti NP. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode. Mater Sci Eng C Mater Biol Appl. 2016.  https://doi.org/10.1016/j.msec.2016.04.045.CrossRefGoogle Scholar
  39. 39.
    Bukkitgar SD, Shetti NP. Electrochemical behavior of anticâncer drug 5-fluorouracil at carbon paste electrode and its analytical application. J Anal Sci Technol. 2016.  https://doi.org/10.1186/s40543-015-0080-3.
  40. 40.
    Shetti NP, Hegde RN, Nandibewoor ST. Mechanistic aspects of uncatalysed and Os (VIII) catalysed oxidation of 5-flourouracil–An anticancer drug by alkaline diperiodatoargentate (III). Inorg Chim Acta. 2009.  https://doi.org/10.1016/j.ica.2008.10.006.CrossRefGoogle Scholar
  41. 41.
    Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl 1):S49–52.Google Scholar
  42. 42.
    Armbruster DA, Tillman MD, Hubbs LM. Limit of detection (LOD)/limit of quantitation (LOQ): comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs. Clin Chem. 1994;40(7 Pt 1):1233–8.Google Scholar
  43. 43.
    Currie LA. Detection and quantification limits: basic concepts, international harmonization, and outstanding (“low-level”) issues. Appl Radiat Isot. 2004.  https://doi.org/10.1016/j.apradiso.2004.03.036.CrossRefGoogle Scholar
  44. 44.
    Satyanarayana M, Goud KY, Reddy KK, Gobi KV. Biopolymer stabilized nanogold particles on carbon nanotube support as sensing platform for electrochemical detection of 5-fluorouracil in vitro. Electrochim Acta. 2015.  https://doi.org/10.1016/j.electacta.2015.08.036.CrossRefGoogle Scholar
  45. 45.
    Wang S, FU S, Ding H. Determination of 5-fluorouracil using disposable gold nanoparticles modified screen-printed electrode. Sens Lett. 2012.  https://doi.org/10.1166/sl.2012.2341.CrossRefGoogle Scholar
  46. 46.
    Zeybek DK, Demir B, Zeybek B, Pekyardimci Ş. A sensitive electrochemical DNA biosensor for antineoplastic drug 5-fluorouracil based on glassy carbon electrode modified with poly(bromocresol purple). Talanta. 2015.  https://doi.org/10.1016/j.talanta.2015.06.077.CrossRefGoogle Scholar
  47. 47.
    Hua X, Hou X, Gong X, Shen G. Electrochemical behavior of 5-fluorouracil on a glassy carbon electrode modified with bromothymol blue and multi-walled carbon nanotubes. Anal Methods. 2013.  https://doi.org/10.1039/C3AY40149A.CrossRefGoogle Scholar
  48. 48.
    Shojaei AF, Tabatabaeian K, Shakeri S, Karimi F. A novel 5-fluorouracile anticancer drug sensor based on ZnFe2O4magnetic nanoparticles ionic liquids carbon paste electrode. Sensors Actuators B. 2016.  https://doi.org/10.1016/j.snb.2016.02.082.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paulo Ronaldo Sousa Teixeira
    • 1
    • 2
  • Ana Siqueira do Nascimento Marreiro Teixeira
    • 1
    • 2
  • Emanuel Airton de Oliveira Farias
    • 3
  • Edson Cavalcanti da Silva Filho
    • 1
  • Helder Nunes da Cunha
    • 1
  • José Ribeiro dos Santos Júnior
    • 1
  • Lívio César Cunha Nunes
    • 1
    • 4
  • Handerson Rodrigues Silva Lima
    • 1
    • 4
  • Carla Eiras
    • 1
    • 3
  1. 1.Laboratório Interdisciplinar de Materiais Avançados – LIMAVCT, UFPITeresinaBrazil
  2. 2.Instituto Federal de Educação Ciência e Tecnologia do Piauí – IFPITeresinaBrazil
  3. 3.Núcleo de Pesquisa em Biodiversidade e BiotecnologiaBIOTECParnaíbaBrazil
  4. 4.Núcleo de Tecnologia FarmacêuticaUniversidade Federal do PiauíTeresinaBrazil

Personalised recommendations