Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 1, pp 13–19 | Cite as

Simplifying the complex: metabolomics approaches in chemical ecology

  • Remington X. PoulinEmail author
  • Georg Pohnert
Trends

Abstract

Chemical signals are important mediators of organismal interactions. These interactions significantly influence ecosystem structure and thus are crucial to understand. Ecologists and analytical chemists work closely together to identify the specific molecules regulating ecological interactions. However, limitations in the analytical techniques on the one hand and time-demanding bioassays on the other have been restraining chemical ecology research. Application of metabolomics techniques has recently led to significant advancement of the field. Here, we discuss modifications to the traditional bioassay-guided fractionation approach with metabolomics techniques. We focus on two challenging topics within chemical ecology, waterborne cues and single-cell investigations, to highlight how metabolomics techniques can succeed where traditional approaches have failed.

Graphical abstract

Keywords

Metabolomics Metabolic profiling Waterborne cues Chemical ecology Single-cell metabolomics 

Notes

Funding information

Support for this research was kindly provided by the Deutsche Forschungsgemeinschaft (DFG) through the collaborative research center 1127 Chemical Mediators in Complex Biosystems (ChemBioSys (CRC 1127)).

Compliance with ethical standards

No research was conducted using human participants or animals of any kind.

No data, text, or theories by others are presented as if they were the author’s own.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hay ME, Kubanek J. Community and ecosystem level consequences of chemical cues in the plankton. J Chem Ecol. 2002;28:2001–16.CrossRefGoogle Scholar
  2. 2.
    Hay ME. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci. 2009;1:193–212.CrossRefGoogle Scholar
  3. 3.
    Eisner T, Meinwald J. The chemistry of sexual selection. Proc Natl Acad Sci U S A. 1995;92(1):1.CrossRefGoogle Scholar
  4. 4.
    Prince EK, Pohnert G. Searching for signals in the noise: metabolomics in chemical ecology. Anal Bioanal Chem. 2010;396(1):193–7.CrossRefGoogle Scholar
  5. 5.
    Kuhlisch C, Pohnert G. Metablomics in chemical ecology. Nat Prod Rep. 2015;32(7):937–55.CrossRefGoogle Scholar
  6. 6.
    Macel M, van Dam NM, Keurentjes JJ. Metabolomics: the chemistry between ecology and genetics. Mol Ecol Resour. 2010;10(4):583–93.CrossRefGoogle Scholar
  7. 7.
    Potin P, Nicolè F, Thomas OP. Metabolomic contributions to chemical ecology. Chem Ecol. 2016:139–60.Google Scholar
  8. 8.
    Butenandt A, Beckmann R, Hecker E. Über den sexuallockstoff des seidenspinners, i. der biologische test und die isolierung des reinen sexuallockstoffes bombykol. Hoppe-Seyler´ s Zeitschrift für Physiologische Chemie. 1961;324(1):71–83.CrossRefGoogle Scholar
  9. 9.
    Selander E, Kubanek J, Hamberg M, Andersson MX, Cervin G, Pavia H. Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc Natl Acad Sci U S A. 2015;112(20):6395–400.CrossRefGoogle Scholar
  10. 10.
    Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2001;2(3):155–68.CrossRefGoogle Scholar
  11. 11.
    Theodoridis GA, Gika HG, Want EJ, Wilson ID. Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta. 2012;711:7–16.CrossRefGoogle Scholar
  12. 12.
    Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum, and tissue extracts. Nat Protoc. 2007;2(11):2692.CrossRefGoogle Scholar
  13. 13.
    Hendriks MM, van Eeuwijk FA, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HC, et al. Data-processing strategies for metabolomics studies. Trends Anal Chem. 2011;30(10):1685–98.CrossRefGoogle Scholar
  14. 14.
    Gillard J, Frenkel J, Devos V, Sabbe K, Paul C, Rempt M, et al. Metabolomics enables the structure elucidation of a diatom sex pheromone. Angew Chem Int Ed Engl. 2013;52(3):854–7.CrossRefGoogle Scholar
  15. 15.
    Forseth RR, Fox EM, Chung D, Howlett BJ, Keller NP, Schroeder FC. Identification of cryptic products of the gliotoxin gene cluster using NMR-based comparative metabolomics and a model for gliotoxin biosynthesis. J Am Chem Soc. 2011;133(25):9678–81.CrossRefGoogle Scholar
  16. 16.
    Sanchez-Arcos C, Reichelt M, Gershenzon J, Kunert G. Modulation of legume defense signaling pathways by native and non-native pea aphid clones. Front Plant Sci. 2016;7(1872).  https://doi.org/10.3389/fpls.2016.01872.
  17. 17.
    Poulin RX, Hogan S, Poulson-Ellestad KL, Brown E, Fernández FM, Kubanek J. Karenia brevis allelopathy compromises the lipidome, membrane integrity, and photosynthesis of competitors. Sci Rep. 2018;8(1):9572.CrossRefGoogle Scholar
  18. 18.
    Wase N, Black PN, Stanley BA, DiRusso CC. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res. 2014;13(3):1373–96.CrossRefGoogle Scholar
  19. 19.
    Schnitzler I, Pohnert G, Hay M, Boland W. Chemical defense of brown algae (Dictyopteris spp.) against the herbivorous amphipod Ampithoe longimana. Oecologia. 2001;126(4):515–21.CrossRefGoogle Scholar
  20. 20.
    Wiesemeier T, Hay M, Pohnert G. The potential role of wound-activated volatile release in the chemical defence of the brown alga Dictyota dichotoma: blend recognitition by marine herbivores. Aquat Sci. 2007;69(3):403–12.CrossRefGoogle Scholar
  21. 21.
    Ziegler TA, Forward RB. Larval release behaviors in the Caribbean spiny lobster, Panulirus argus: role of peptide pheromones. J Chem Ecol. 2007;33(9):1795–805.CrossRefGoogle Scholar
  22. 22.
    Spielmeyer A, Gebser B, Pohnert G. Investigations of the uptake of dimethylsulfoniopropionate by phytoplankton. ChemBioChem. 2011;12(15):2276–9.CrossRefGoogle Scholar
  23. 23.
    Moeys S, Frenkel J, Lembke C, Gillard JT, Devos V, Van den Berge K, et al. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep. 2016;6:19252.CrossRefGoogle Scholar
  24. 24.
    Poulin RX, Lavoie S, Siegel K, Gaul DA, Weissburg MJ, Kubanek J. Chemical encoding of risk perception and predator detection among estuarine invertebrates. Proc Natl Acad Sci U S A. 2018:201713901.Google Scholar
  25. 25.
    Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, et al. Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology. 2002;148(11):3737–41.CrossRefGoogle Scholar
  26. 26.
    Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK. Microbial volatile emissions as insect semiochemicals. J Chem Ecol. 2013;39(7):840–59.CrossRefGoogle Scholar
  27. 27.
    Miller MB, Bassler BL. Quorum sensing in bacteria. Ann Rev Microbiol. 2001;55(1):165–99.CrossRefGoogle Scholar
  28. 28.
    Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci. 2007;104(40):15876–81.CrossRefGoogle Scholar
  29. 29.
    Popat R, Crusz SA, Messina M, Williams P, West SA, Diggle SP. Quorum-sensing and cheating in bacterial biofilms. Proc R Soc Lond B. 2012;279(1748):4765–71.CrossRefGoogle Scholar
  30. 30.
    Carnes EC, Lopez DM, Donegan NP, Cheung A, Gresham H, Timmins GS, et al. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat Chem Biol. 2010;6(1):41.CrossRefGoogle Scholar
  31. 31.
    Petras D, Jarmusch AK, Dorrestein PC. From single cells to our planet˗recent advances in using mass spectrometry for spatially resolved metabolomics. Curr Opin Chem Biol. 2017;36:24–31.CrossRefGoogle Scholar
  32. 32.
    Vaysse P-M, Heeren RM, Porta T, Balluff B. Mass spectrometry imaging for clinical research˗latest developments, applications, and current limitations. Analyst. 2017;142(15):2690–712.CrossRefGoogle Scholar
  33. 33.
    Dalisay DS, Kim KW, Lee C, Yang H, Rübel O, Bowen BP, et al. Dirigent protein-mediated lignan and cyanogentic glucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging. J Nat Prod. 2015;78(6):1231–42.CrossRefGoogle Scholar
  34. 34.
    Soltwisch J, Kettling H, Vens-Cappell S, Wiegelmann M, Müthing J, Dreisewerd K (2015) Mass spectrometry imaging with laser-induced postionization. Science: aaa1051.Google Scholar
  35. 35.
    Fletcher JS, Vickerman JC. A new SIMS paradigm for 2D and 3D molecular imaging of bio-systems. Anal Bioanal Chem. 2010;396(1):85–104.CrossRefGoogle Scholar
  36. 36.
    Hölscher D, Dhakshinamoorthy S, Alexandrov T, Becker M, Bretschneider T, Buerkert A, et al. Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis. Proc Natl Acad Sci U S A. 2014;111(1):105–10.CrossRefGoogle Scholar
  37. 37.
    Carpenter KJ, Weber PK, Davisson ML, Pett-Ridge J, Haverty MI, Keeling PJ. Correlated SEM, FIB-SEM, TEM, and NanoSIMS imaging of microbes from the hindgut of a lower termite: methods for in situ functional and ecological studies of uncultivable microbes. Microsc Microanal. 2013;19(6):1490–501.CrossRefGoogle Scholar
  38. 38.
    Aiyar P, Schaeme D, García-Altares M, Flores DC, Dathe H, Hertweck C, et al. Antagonistic bacteria disrupt calcium homeostasis and immobilize algale cells. Nat Commun. 2017;8(1):1756.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Anorganische und Analytische Chemie, Lehrstuhl für Instrumentelle Analytik/Bioorganische AnalytikFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations