Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 1, pp 277–285 | Cite as

Investigation of various layered lithium ion battery cathode materials by plasma- and X-ray-based element analytical techniques

  • Marco Evertz
  • Johannes Kasnatscheew
  • Martin Winter
  • Sascha NowakEmail author
Research Paper

Abstract

In this work, the transition metal dissolution (TMD) from the respective ternary layered LiMO2 (M = Mn, Co, Ni, Al) cathode active material was investigated as well as the lithiation degrees of the cathodes after charge/discharge cyclic aging. Furthermore, increased nickel contents in LiNixCoyMnzO2-based (NCM) cathode materials were studied, to elucidate their influence on capacity fading and TMD. It was found, that the TMD from nickel-rich cathode materials, e.g., LiNi0.6Co0.2Mn0.2O2 or LiNi0.8Co0.1Mn0.1O2, did not differ significantly from the TMD from the stoichiometric LiNi1/3Co1/3Mn1/3O2. In detail, the TMD from the cathode did not exceed a maximum of 0.2 wt% and was uniformly distributed on all analyzed cell parts (separator, anode, and electrolyte) using total reflection X-ray fluorescence. Moreover, the investigated electrolyte solutions showed that increased Ni contents come with more nickel dissolution of the respective material. Additionally, inductively coupled plasma optical emission spectroscopy analysis on the respective charge/discharge cyclic-aged cathode active materials revealed lithium losses of 20% after 50 cycles. However, only a minimum amount of capacity loss (= 1.5 mAh g−1) can be attributed to active material loss.

Keywords

TXRF Lithium ion battery Transition metal dissolution Capacity fade Lithium loss 

Notes

Funding information

The authors wish to thank the German Federal Ministry of Education and Research (BMBF) for funding this work in the project “Elektrolytlabor - 4E” (03X4632).

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Manthiram A. An outlook on lithium ion battery technology. ACS Central Sci. 2017.  https://doi.org/10.1021/acscentsci.7b00288.
  2. 2.
    Blomgren GE. The development and future of lithium ion batteries. J Electrochem Soc. 2017;164(1):A5019–25.  https://doi.org/10.1149/2.0251701jes.CrossRefGoogle Scholar
  3. 3.
    Scrosati B, Abraham KM, Schalkwijk WAV, Hassoun J. Lithium batteries: advanced technologies and applications. 2013.Google Scholar
  4. 4.
    Goodenough JB, Park K-S. The Li-ion rechargeable battery: a perspective. JACS. 2013;135(4):1167–76.  https://doi.org/10.1021/ja3091438.CrossRefGoogle Scholar
  5. 5.
    Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energ. 2018;3(4):267–78.  https://doi.org/10.1038/s41560-018-0107-2.CrossRefGoogle Scholar
  6. 6.
    Trainer T. Some problems in storing renewable energy. Energy Policy. 2017;110(Supplement C):386–93.  https://doi.org/10.1016/j.enpol.2017.07.061.CrossRefGoogle Scholar
  7. 7.
    Li W, Long R, Chen H, Geng J. A review of factors influencing consumer intentions to adopt battery electric vehicles. Renew Sust Energ Rev. 2017;78(Supplement C):318–28.  https://doi.org/10.1016/j.rser.2017.04.076.CrossRefGoogle Scholar
  8. 8.
    Wagner R, Preschitschek N, Passerini S, Leker J, Winter M. Current research trends and prospects among the various materials and designs used in lithium-based batteries. J Appl Electrochem. 2013;43(5):481–96.  https://doi.org/10.1007/s10800-013-0533-6.CrossRefGoogle Scholar
  9. 9.
    Grützke M, Kraft V, Hoffmann B, Klamor S, Diekmann J, Kwade A, et al. Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle. J Power Sources. 2015;273(Supplement C):83–8.  https://doi.org/10.1016/j.jpowsour.2014.09.064.CrossRefGoogle Scholar
  10. 10.
    Friesen A, Schultz C, Brunklaus G, Rodehorst U, Wilken A, Haetge J, et al. Long term aging of automotive type lithium-ion cells. ECS Trans. 2015;69(18):89–99.CrossRefGoogle Scholar
  11. 11.
    Broussely M, Biensan P, Bonhomme F, Blanchard P, Herreyre S, Nechev K, et al. Main aging mechanisms in Li ion batteries. J Power Sources. 2005;146(1–2):90–6.  https://doi.org/10.1016/j.jpowsour.2005.03.172.CrossRefGoogle Scholar
  12. 12.
    Abraham DP, Reynolds EM, Sammann E, Jansen AN, Dees DW. Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes. Electrochim Acta. 2005;51(3):502–10.CrossRefGoogle Scholar
  13. 13.
    Wohlfahrt-Mehrens M, Vogler C, Garche J. Aging mechanisms of lithium cathode materials. J Power Sources. 2004;127(1–2):58–64.  https://doi.org/10.1016/j.jpowsour.2003.09.034.CrossRefGoogle Scholar
  14. 14.
    Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz RJ. Aging mechanism in Li ion cells and calendar life predictions. J Power Sources. 2001;97-8:13–21.CrossRefGoogle Scholar
  15. 15.
    Zhan C, Wu T, Lu J, Amine K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes - a critical review. Energy Environ Sci. 2018.  https://doi.org/10.1039/C7EE03122J.
  16. 16.
    Joshi T, Eom K, Yushin G, Fuller TF. Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries. J Electrochem Soc. 2014;161(12):A1915–21.  https://doi.org/10.1149/2.0861412jes.CrossRefGoogle Scholar
  17. 17.
    Vortmann-Westhoven B, Winter M, Nowak S. Where is the lithium? Quantitative determination of the lithium distribution in lithium ion battery cells: investigations on the influence of the temperature, the C-rate and the cell type. J Power Sources. 2017;346:63–70.CrossRefGoogle Scholar
  18. 18.
    Schwieters T, Evertz M, Mense M, Winter M, Nowak S. Lithium loss in the solid electrolyte interphase: lithium quantification of aged lithium ion battery graphite electrodes by means of laser ablation inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectroscopy. J Power Sources. 2017;356(Supplement C):47–55.  https://doi.org/10.1016/j.jpowsour.2017.04.078.CrossRefGoogle Scholar
  19. 19.
    Gilbert JA, Shkrob IA, Abraham DP. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells. J Electrochem Soc. 2017;164(2):A389–99.  https://doi.org/10.1149/2.1111702jes.CrossRefGoogle Scholar
  20. 20.
    Winter M. The solid electrolyte interphase – the most important and the least understood solid electrolyte in rechargeable Li batteries. Z Phys Chem. 2009;223.  https://doi.org/10.1524/zpch.2009.6086.
  21. 21.
    Agubra VA, Fergus JW. The formation and stability of the solid electrolyte interface on the graphite anode. J Power Sources. 2014;268(Supplement C):153–62.  https://doi.org/10.1016/j.jpowsour.2014.06.024.CrossRefGoogle Scholar
  22. 22.
    An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon. 2016;105(Supplement C):52–76.  https://doi.org/10.1016/j.carbon.2016.04.008.CrossRefGoogle Scholar
  23. 23.
    Fell CR, Qian D, Carroll KJ, Chi M, Jones JL, Meng YS. Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle. Chem Mater. 2013;25(9):1621–9.  https://doi.org/10.1021/cm4000119.CrossRefGoogle Scholar
  24. 24.
    Benedek R. Role of disproportionation in the dissolution of Mn from lithium manganate spinel. J Phys Chem C. 2017;121(40):22049–53.  https://doi.org/10.1021/acs.jpcc.7b05940.CrossRefGoogle Scholar
  25. 25.
    Wang J, Purewal J, Liu P, Hicks-Garner J, Soukazian S, Sherman E, et al. Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide plus spinel manganese oxide positives: part 1, aging mechanisms and life estimation. J Power Sources. 2014;269:937–48.  https://doi.org/10.1016/j.jpowsour.2014.07.030.CrossRefGoogle Scholar
  26. 26.
    Zhan C, Lu J, Jeremy Kropf A, Wu T, Jansen AN, Sun Y-K, et al. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems. Nat Commun. 2013;4.  https://doi.org/10.1038/ncomms3437.
  27. 27.
    Terada Y, Nishiwaki Y, Nakai I, Nishikawa F. Study of Mn dissolution from LiMn2O4 spinel electrodes using in situ total reflection X-ray fluorescence analysis and fluorescence XAFS technique. J Power Sources. 2001;97(Supplement C):420–2.  https://doi.org/10.1016/S0378-7753(01)00741-8.CrossRefGoogle Scholar
  28. 28.
    Gallus DR, Schmitz R, Wagner R, Hoffmann B, Nowak S, Cekic-Laskovic I, et al. The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material. Electrochim Acta. 2014;134:393–8.CrossRefGoogle Scholar
  29. 29.
    Zheng J, Gu M, Xiao J, Zuo P, Wang C, Zhang J-G. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 2013;13(8):3824–30.  https://doi.org/10.1021/nl401849t.CrossRefPubMedGoogle Scholar
  30. 30.
    Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today. 2015;18(5):252–64.  https://doi.org/10.1016/j.mattod.2014.10.040.CrossRefGoogle Scholar
  31. 31.
    Manthiram A, Song B, Li W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 2017;6(Supplement C):125–39.  https://doi.org/10.1016/j.ensm.2016.10.007.CrossRefGoogle Scholar
  32. 32.
    Ellis B, Lee KT, Nazar L. Positive electrode materials for Li-ion and Li-batteries. Chem Mater. 2010;22(3):691–714.CrossRefGoogle Scholar
  33. 33.
    Whittingham M. Lithium batteries and cathode materials. Chem Rev. 2004;104(10):4271–301.  https://doi.org/10.1021/cr020731c.CrossRefPubMedGoogle Scholar
  34. 34.
    Kasnatscheew J, Evertz M, Kloepsch R, Streipert B, Wagner R, Cekic Laskovic I, et al. Learning from electrochemical data: simple evaluation and classification of LiMO2-type-based positive electrodes for Li-ion batteries. Energy Technol. 2017;5(9):1670–9.  https://doi.org/10.1002/ente.201700068.CrossRefGoogle Scholar
  35. 35.
    Reimers JN, Dahn JR. Electrochemical and insitu X-rAY diffraction studies of lithium intercalation in Li X CoO2. J Electrochem Soc. 1992;139(8):2091–7.  https://doi.org/10.1149/1.2221184.CrossRefGoogle Scholar
  36. 36.
    Gao P, Yang G, Liu HD, Wang L, Zhou HS. Lithium diffusion behavior and improved high rate capacity of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium batteries. Solid State Ionics. 2012;207:50–6.  https://doi.org/10.1016/j.ssi.2011.11.020.CrossRefGoogle Scholar
  37. 37.
    Zheng HH, Tan L, Liu G, Song XY, Battaglia VS. Calendering effects on the physical and electrochemical properties of Li Ni1/3Mn1/3Co1/3 O-2 cathode. J Power Sources. 2012;208:52–7.  https://doi.org/10.1016/j.jpowsour.2012.02.001.CrossRefGoogle Scholar
  38. 38.
    Park Y, Shin SH, Hwang H, Lee SM, Kim SP, Choi HC, et al. Investigation of solid electrolyte interface (SEI) film on LiCoO2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS). J Mol Struct. 2014;1069:157–63.  https://doi.org/10.1016/j.molstruc.2014.01.041.CrossRefGoogle Scholar
  39. 39.
    Park Y, Shin SH, Lee SM, Kim SP, Choi HC, Jung YM. 2D Raman correlation analysis of formation mechanism of passivating film on overcharged LiCoO2 electrode with additive system. J Mol Struct. 2014;1069:183–7.  https://doi.org/10.1016/j.molstruc.2014.01.083.CrossRefGoogle Scholar
  40. 40.
    Kang SH, Yoon WS, Nam KW, Yang XQ, Abraham DP. Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries. J Mater Sci. 2008;43(14):4701–6.  https://doi.org/10.1007/s10853-007-2355-6.CrossRefGoogle Scholar
  41. 41.
    Kasnatscheew J, Evertz M, Streipert B, Wagner R, Klopsch R, Vortmann B, et al. The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes. Phys Chem Chem Phys. 2016;18(5):3956–65.  https://doi.org/10.1039/c5cp07718d.CrossRefPubMedGoogle Scholar
  42. 42.
    Kasnatscheew J, Evertz M, Streipert B, Wagner R, Nowak S, Cekic Laskovic I, et al. Improving cycle life of layered lithium transition metal oxide (Li M O 2 ) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions. J Power Sources. 2017;359.  https://doi.org/10.1016/j.jpowsour.2017.05.092.
  43. 43.
    Kasnatscheew J, Rodehorst U, Streipert B, Wiemers-Meyer S, Jakelski R, Wagner R, et al. Learning from overpotentials in lithium ion batteries: a case study on the LiNi1/3Co1/3Mn1/3O2 (NCM) cathode. J Electrochem Soc. 2016;163(14):A2943–50.  https://doi.org/10.1149/2.0461614jes.CrossRefGoogle Scholar
  44. 44.
    Kasnatscheew J, Streipert B, Röser S, Wagner R, Cekic Laskovic I, Winter M. Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies. Phys Chem Chem Phys. 2017;19(24):16078–86.  https://doi.org/10.1039/C7CP03072J.CrossRefPubMedGoogle Scholar
  45. 45.
    Kasnatscheew J, Placke T, Streipert B, Rothermel S, Wagner R, Meister P, et al. A tutorial into practical capacity and mass balancing of lithium ion batteries. J Electrochem Soc. 2017;164(12):A2479–86.  https://doi.org/10.1149/2.0961712jes.CrossRefGoogle Scholar
  46. 46.
    Menzel M, Scharf O, Nowak SH, Radtke M, Reinholz U, Hischenhuber P, et al. Shading in TXRF: calculations and experimental validation using a color X-ray camera. J Anal At Spectrom. 2015;30(10):2184–93.  https://doi.org/10.1039/C5JA00127G.CrossRefGoogle Scholar
  47. 47.
    Krämer E, Passerini S, Winter M. Dependency of aluminum collector corrosion in lithium ion batteries on the electrolyte solvent. ECS Electrochem Lett. 2012;1(5):C9–C11.CrossRefGoogle Scholar
  48. 48.
    Evertz M, Horsthemke F, Kasnatscheew J, Börner M, Winter M, Nowak S. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique. J Power Sources. 2016;329:364–71.  https://doi.org/10.1016/j.jpowsour.2016.08.099.CrossRefGoogle Scholar
  49. 49.
    Börner M, Horsthemke F, Kollmer F, Haseloff S, Friesen A, Niehoff P, et al. Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes. J Power Sources. 2016;335:45–55.  https://doi.org/10.1016/j.jpowsour.2016.09.071.CrossRefGoogle Scholar
  50. 50.
    Evertz M, Lürenbaum C, Vortmann B, Winter M, Nowak S. Development of a method for direct elemental analysis of lithium ion battery degradation products by means of total reflection X-ray fluorescence. Spectrochim Acta B At Spectrosc. 2015;112:34–9.  https://doi.org/10.1016/j.sab.2015.08.005.CrossRefGoogle Scholar
  51. 51.
    Gowda SR, Gallagher KG, Croy JR, Bettge M, Thackeray MM, Balasubramanian M. Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells. Phys Chem Chem Phys. 2014;16(15):6898–902.  https://doi.org/10.1039/c4cp00764f.CrossRefPubMedGoogle Scholar
  52. 52.
    Shin H, Park J, Sastry AM, Lu W. Degradation of the solid electrolyte interphase induced by the deposition of manganese ions. J Power Sources. 2015;284:416–27.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marco Evertz
    • 1
  • Johannes Kasnatscheew
    • 2
  • Martin Winter
    • 1
    • 2
  • Sascha Nowak
    • 1
    Email author
  1. 1.MEET Battery Research Center, Institute of Physical ChemistryUniversity of MünsterMünsterGermany
  2. 2.Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich GmbHMünsterGermany

Personalised recommendations