Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 1, pp 171–179 | Cite as

An ultrasensitive sensor based on quantitatively modified upconversion particles for trace bisphenol A detection

  • Qiaofeng Li
  • Jialei Bai
  • Shuyue Ren
  • Jiang Wang
  • Yifei Gao
  • Shuang Li
  • Yuan Peng
  • Baoan Ning
  • Zhixian Gao
Research Paper

Abstract

Bisphenol A (BPA) is one of the endocrine-disrupting chemicals which might cause reproductive and endocrine system diseases, and poses a serious threat to the ecosystem and human health. This paper reports an ultrasensitive sensor for trace BPA detection employing fluorescence resonance energy transfer (FRET) between modified upconversion nanoparticles (UCNPs) and tetramethylrhodamine. To circumvent the problems of low luminous efficiency of FRET and low sensitivity of sensor, the upconversion nanoparticles with very strong fluorescence efficiency were prepared and quantitatively modified. Results showed that the concentrations of amino groups and streptavidin were 43 nmol/mg and 6.12 μg/mg on the surface of the UCNPs, respectively. Under the optimal detection conditions, the peak intensity of UCNPs at 547 nm was linear with the logarithm of the BPA concentration with the detection limit of 0.05 ng/mL. Without complicated pre-processing, the recoveries were in general between 91.0 and 115.0% in tap water, river water, and disposable paper cup water. Therefore, the proposed sensor is suitable for effective sensing of trace BPA in water samples.

Graphical abstract

Keywords

Sensor Upconversion particles Quantitative modification Bisphenol A 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21477162, 81602896, AWS15J006); the Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 15JCYBJC51200); the National Key Research and Development Program of China (Grant No. 2017YFF0104903) and Natural Science Fund of Tianjin City (Grant No. 17JCQNJC12500).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interest.

Supplementary material

216_2018_1425_MOESM1_ESM.pdf (5.8 mb)
ESM 1 (PDF 5869 kb)

References

  1. 1.
    Tang JF, Zhang Y, Gou J, Ma ZL, Li GN, Man YH, et al. Sol-gel prepared Yb3+/Er3+ co-doped RE2O3 (RE = La, Gd, Lu) nanocrystals: structural characterization and temperature-dependent upconversion behavior. J Alloys Compd. 2018;740:229–36.  https://doi.org/10.1016/j.jallcom.2018.01.050.CrossRefGoogle Scholar
  2. 2.
    Du P, Luo LH, Li WP, Yue QY, Chen HB. Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O-3-0.5(Ba0.7Ca0.3)TiO3 ceramic. Appl Phys Lett. 2014;104(15).  https://doi.org/10.1063/1.4871378.
  3. 3.
    Du P, Luo LH, Yu JS. Energy back transfer induced color controllable upconversion emissions in La2MoO6:Er3+/Yb3+ nanocrystals for versatile applications. Part Part Syst Charact. 2018;35(3).  https://doi.org/10.1002/ppsc.201700416.
  4. 4.
    Watabe Y, Kondo T, Morita M, Tanaka N, Haginaka J, Hosoya K. Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device. J Chromatogr A. 2004;1032(1–2):45–9.  https://doi.org/10.1016/j.chroma.2003.11.079.CrossRefPubMedGoogle Scholar
  5. 5.
    Becerra V, Odermatt J. Detection and quantification of traces of bisphenol A and bisphenol S in paper samples using analytical pyrolysis-GC/MS. Analyst. 2012;137(9):2250–9.  https://doi.org/10.1039/c2an15961a.CrossRefPubMedGoogle Scholar
  6. 6.
    Motoyama A, Suzuki A, Shirota O, Namba R. Direct determination of bisphenol A and nonylphenol in river water by column-switching semi-microcolumn liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Spectrom. 1999;13(21):2204–8.  https://doi.org/10.1002/(sici)1097-0231(19991115)13:21<2204::aid-rcm776>3.0.co;2-9.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhou X, Kramer JP, Calafat AM, Ye X. Automated on-line column-switching high performance liquid chromatography isotope dilution tandem mass spectrometry method for the quantification of bisphenol A, bisphenol F, bisphenol S, and 11 other phenols in urine. J Chromatogr B Anal Technol Biomed Life Sci. 2014;944:152–6.  https://doi.org/10.1016/j.jchromb.2013.11.009.CrossRefGoogle Scholar
  8. 8.
    Miao W, Wei B, Yang R, Wu C, Lou D, Jiang W, et al. Highly specific and sensitive detection of bisphenol A in water samples using an enzyme-linked immunosorbent assay employing a novel synthetic antigen. New J Chem. 2014;38(2):669–75.  https://doi.org/10.1039/C3NJ01094E.CrossRefGoogle Scholar
  9. 9.
    Moreno MJ, D'Arienzo P, Manclus JJ, Montoya A. Development of monoclonal antibody-based immunoassays for the analysis of bisphenol A in canned vegetables. J Environ Sci Health B. 2011;46(6):509–17.  https://doi.org/10.1080/03601234.2011.583871.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao MP, Li YZ, Guo ZQ, Zhang XX, Chang WB. A new competitive enzyme-linked immunosorbent assay (ELISA) for determination of estrogenic bisphenols. Talanta. 2002;57(6):1205–10.PubMedGoogle Scholar
  11. 11.
    Liang X, Wang H, Wang H, Pei G. Colorimetric detection of bisphenol A using Au-Fe alloy nanoparticle aggregation. Anal Methods. 2015;7(9):3952–7.  https://doi.org/10.1039/C5AY00090D.CrossRefGoogle Scholar
  12. 12.
    Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22.  https://doi.org/10.1038/346818a0.CrossRefPubMedGoogle Scholar
  13. 13.
    Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, NY). 1990;249(4968):505–10.CrossRefGoogle Scholar
  14. 14.
    Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron. 2005;20(12):2424–34.  https://doi.org/10.1016/j.bios.2004.11.006.CrossRefPubMedGoogle Scholar
  15. 15.
    Xing H, Hwang K, Li J, Torabi S-F, Lu Y. DNA aptamer technology for personalized medicine. Curr Opin Chem Eng. 2014;4:79–87.  https://doi.org/10.1016/j.coche.2014.01.007.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Guo X, Wu S, Duan N, Wang Z. Mn(2+)-doped NaYF4:Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A. Anal Bioanal Chem. 2016;408(14):3823–31.  https://doi.org/10.1007/s00216-016-9470-7.CrossRefPubMedGoogle Scholar
  17. 17.
    Jo M, Ahn J-Y, Lee J, Lee S, Hong SW, Yoo J-W, et al. Development of single-stranded DNA aptamers for specific bisphenol A detection. Oligonucleotides. 2011;21(2):85–91.  https://doi.org/10.1089/oli.2010.0267.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pan D, Gu Y, Lan H, Sun Y, Gao H. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A. Anal Chim Acta. 2015;853:297–302.  https://doi.org/10.1016/j.aca.2014.11.004.CrossRefPubMedGoogle Scholar
  19. 19.
    Xue F, Wu J, Chu H, Mei Z, Ye Y, Liu J, et al. Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchim Acta. 2013;180(1):109–15.  https://doi.org/10.1007/s00604-012-0909-z.CrossRefGoogle Scholar
  20. 20.
    Yildirim N, Long F, He M, Shi H-C, Gu AZ. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environ Sci Process Impacts. 2014;16(6):1379–86.  https://doi.org/10.1039/C4EM00046C.CrossRefPubMedGoogle Scholar
  21. 21.
    Yu P, Liu Y, Zhang X, Zhou J, Xiong E, Li X, et al. A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy. Biosens Bioelectron. 2016;79:22–8.  https://doi.org/10.1016/j.bios.2015.12.007.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhou L, Wang J, Li D, Li Y. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem. 2014;162:34–40.  https://doi.org/10.1016/j.foodchem.2014.04.058.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhong W. Nanomaterials in fluorescence-based biosensing. Anal Bioanal Chem. 2009;394(1):47–59.  https://doi.org/10.1007/s00216-009-2643-x.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhu Y, Cai Y, Xu L, Zheng L, Wang L, Qi B, et al. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl Mater Interfaces. 2015;7(14):7492–6.  https://doi.org/10.1021/acsami.5b00199.CrossRefPubMedGoogle Scholar
  25. 25.
    Kuang R, Kuang X, Pan S, Zheng X, Duan J, Duan Y. Synthesis of cysteamine-coated CdTe quantum dots for the detection of bisphenol A. Microchim Acta. 2010;169(1–2):109–15.CrossRefGoogle Scholar
  26. 26.
    Li Y, Xu J, Wang L, Huang Y, Guo J, Cao X, et al. Aptamer-based fluorescent detection of bisphenol A using nonconjugated gold nanoparticles and CdTe quantum dots. Sensors Actuators B Chem. 2016;222:815–22.  https://doi.org/10.1016/j.snb.2015.08.130.CrossRefGoogle Scholar
  27. 27.
    Li DY, Wang YX, Zhang XR, Yang K, Liu L, Song YL. Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3. Opt Commun. 2012;285(7):1925–8.  https://doi.org/10.1016/j.optcom.2011.12.075.CrossRefGoogle Scholar
  28. 28.
    Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844–9.  https://doi.org/10.1021/nl2038979.CrossRefPubMedGoogle Scholar
  29. 29.
    Wu S, Duan N, Zhu C, Ma X, Wang M, Wang Z. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels. Biosens Bioelectron. 2011;30(1):35–42.  https://doi.org/10.1016/j.bios.2011.08.023.CrossRefPubMedGoogle Scholar
  30. 30.
    Yin M, Wu L, Li Z, Ren J, Qu X. Facile in situ fabrication of graphene-upconversion hybrid materials with amplified electrogenerated chemiluminescence. Nanoscale. 2012;4(2):400–4.  https://doi.org/10.1039/C1NR11393C.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed Eng. 2005;44(37):6054–7.  https://doi.org/10.1002/anie.200501907.CrossRefGoogle Scholar
  32. 32.
    Zhang ZLY. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology. 2008.  https://doi.org/10.1088/0957-4484/19/34/345606.
  33. 33.
    Stalder K, Stober W. Haemolytic activity of suspensions of different silica modifications and inert dusts. Nature. 1965;207(4999):874–5.CrossRefGoogle Scholar
  34. 34.
    Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, et al. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem. 2012;84(14):6263–70.  https://doi.org/10.1021/ac301534w.CrossRefPubMedGoogle Scholar
  35. 35.
    Chu C-H, Sarangadharan I, Regmi A, Chen Y-W, Hsu C-P, Chang W-H, et al. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum. Sci Rep. 2017;7(1):5256.  https://doi.org/10.1038/s41598-017-05426-6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, et al. Label-free biomarker detection from whole blood. Nat Nanotechnol. 2009;5:138.  https://doi.org/10.1038/nnano.2009.353 https://www.nature.com/articles/nnano.2009.353#supplementary-information.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qiaofeng Li
    • 1
    • 2
  • Jialei Bai
    • 1
  • Shuyue Ren
    • 1
  • Jiang Wang
    • 1
  • Yifei Gao
    • 3
  • Shuang Li
    • 1
  • Yuan Peng
    • 1
  • Baoan Ning
    • 1
  • Zhixian Gao
    • 1
  1. 1.Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational MedicineAcademy of Military Medical Science, Academy of Military ScienceTianjinChina
  2. 2.State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyWuxiChina
  3. 3.School of ChemistryUniversity of New South WalesSydneyAustralia

Personalised recommendations