Analytical and Bioanalytical Chemistry

, Volume 411, Issue 1, pp 129–137 | Cite as

Hollow and porous nickel sulfide nanocubes prepared from a metal-organic framework as an efficient enzyme mimic for colorimetric detection of hydrogen peroxide

  • Hongying Liu
  • Huan Ma
  • Hanxiao Xu
  • Jiajun Wen
  • Zhiheng Huang
  • Yubin Qiu
  • Kai Fan
  • Dujuan Li
  • Chunchuan GuEmail author
Paper in Forefront


Hollow, porous NiS nanocubes were prepared by a hydrothermal method starting from Ni–Co Prussian blue analogue nanocubes as the template. The morphology and structure of the NiS nanocubes were tuned by adjustment of the ion-exchange rate and the degree of chemical etching, and they were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and nitrogen sorption measurements. The NiS nanocubes are shown to act as a peroxidase mimic that can catalyze the oxidization of 3,3′,5,5′-tetramethylbenzidine by hydrogen peroxide (H2O2), producing a visible color change, for which the absorbance is best measured at 652 nm. The outstanding activity may result from the unique structure of the NiS nanocubes. The catalytic oxidation follows Michaelis–Menten kinetics and shows a ping-pong mechanism of enzyme action. The findings were used to develop a rapid, sensitive, and selective colorimetric H2O2 assay with a response that is linear in the 4–40 μM range with a detection limit of 1.72 μM (signal-to-noise ratio of 3).

Graphical abstarct


Hydrogen peroxide NiS nanocubes Peroxidase-like mimic Colorimetric method Metal–organic framework 



This study was financed by the Science and Technology Program of Zhejiang Province of China (LGF18H200005), the National Natural Science Foundation of China (21405029), the Young Talent Development Project of Zhejiang Science and Technology Association (2016YCGC007), the Social Development Project of Hangzhou (20160533B70), the Medical and Health Technology Development Program of Zhejiang province (2017KY533) and Natural Science Foundation of Zhejiang Province (LQ16C200007).

Compliance with ethical standards

Conflict of interest

There authors declare that they have no competing interests.


  1. 1.
    Ju J, Chen W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem. 2015;87:1903–10.CrossRefGoogle Scholar
  2. 2.
    Kogularasu S, Govindasamy M, Chen S, Akilarasan M, Mani V. 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sens Actuators B. 2017;253:773–83.CrossRefGoogle Scholar
  3. 3.
    Sun Y, He K, Zhang Z, Zhou A, Duan H. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode. Biosens Bioelectron. 2015;68:358–64.CrossRefGoogle Scholar
  4. 4.
    Liu Q, Yang Y, Lv X, Ding Y, Zhang Y, Jing J, et al. One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sens Actuators B. 2017;240:726–34.CrossRefGoogle Scholar
  5. 5.
    Azizi SN, Ghasemi S, Samadi-Maybodi A, Ranjbar-Azad M. A new modified electrode based on Ag-doped mesoporous SBA-16 nanoparticles as non-enzymatic sensor for hydrogen peroxide. Sens Actuators B. 2015;216:271–8.CrossRefGoogle Scholar
  6. 6.
    Mahmoudian MR, Alias Y, Basirun WJ, Woi PM, Sookhakian M. Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide. Sens Actuators B. 2014;201:526–34.CrossRefGoogle Scholar
  7. 7.
    Liu J, Yang C, Shang Y, Zhang P, Liu J, Zheng J. Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide. Microchim Acta. 2018;185:172–9.CrossRefGoogle Scholar
  8. 8.
    Wang L, Xu M, Xie Y, Song Y, Wang L. A nonenzymatic electrochemical H2O2 sensor based on macroporous carbon/polymer foam/PtNPs electrode. J Mater Sci. 2018;53:10946–54.CrossRefGoogle Scholar
  9. 9.
    Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F. A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta. 2017;184:4629–35.CrossRefGoogle Scholar
  10. 10.
    Walekar LS, Hu P, Liao F, Guo X, Long M. Turn-on fluorometric and colorimetric probe for hydrogen peroxide based on the in-situ formation of silver ions from a composite made from N-doped carbon quantum dots and silver nanoparticles. Microchim Acta. 2018;185:31–9.CrossRefGoogle Scholar
  11. 11.
    Wiesufer S, Boddenberg A, Ligon AP, Dallmann G, Turner WV, Gab S. An automated instrument for determining atmospheric H2O2 and organic hydroperoxides by stripping and HPLC. Environ Sci Pollut Res. 2002;4:41–7.Google Scholar
  12. 12.
    Lin T, Zhong L, Song Z, Guo L, Wu H, Guo Q, et al. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens Bioelectron. 2014;62:302–7.CrossRefGoogle Scholar
  13. 13.
    Khataee A, Haddad Irani-Nezhad M, Hassanzadeh J, Woo Joo S. Superior peroxidase mimetic activity of tungsten disulfide nanosheets/silver nanoclusters composite: colorimetric, fluorometric and electrochemical studies. J Colloid Interface Sci. 2018;515:39–49.CrossRefGoogle Scholar
  14. 14.
    Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42:6060–93.CrossRefGoogle Scholar
  15. 15.
    Yang B, Li J, Deng H, Zhang L. Progress of mimetic enzymes and their applications in chemical sensors. Crit Rev Anal Chem. 2016;46:469–81.CrossRefGoogle Scholar
  16. 16.
    Pumera M, Sofer Z, Ambrosi A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J Mater Chem A. 2014;2:8981–7.CrossRefGoogle Scholar
  17. 17.
    Li Z, Yang X, Yang Y, Tan Y, He Y, Liu M, et al. Peroxidase-mimicking nanozyme with enhanced activity and high stability based on metal-support interactions. Chem Eur J. 2018;24:409–15.CrossRefGoogle Scholar
  18. 18.
    Gu Y, Cheng K, Wu Y, Wang Y, Morlay C, Li F. Metal organic framework-templated synthesis of bifunctional N-doped TiO2 carbon nanotablets via solid-state thermolysis. ACS Sustain Chem Eng. 2016;4:6744–53.CrossRefGoogle Scholar
  19. 19.
    Zhang L, Deng H, Lin F, Xu X, Weng S, Liu A, et al. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal Chem. 2014;86:2711–8.CrossRefGoogle Scholar
  20. 20.
    Peng H, Lin D, Liu P, Wu Y, Li S, Lei Y, et al. Highly sensitive and rapid colorimetric sensing platform based on water-soluble WOx quantum dots with intrinsic peroxidase-like activity. Anal Chim Acta. 2017;992:128–34.CrossRefGoogle Scholar
  21. 21.
    Wang S, Deng W, Yang L, Tan Y, Xie Q, Yao S. Copper-based metal organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of staphylococcus aureus. ACS Appl Mater Inter. 2017;9:24440–5.CrossRefGoogle Scholar
  22. 22.
    Li Y, Li T, Chen W, Song Y. Co4N Nanowires: noble-metal-free peroxidase mimetic with excellent salt- and temperature-resistant abilities. ACS Appl Mater Inter. 2017;9:29881–8.CrossRefGoogle Scholar
  23. 23.
    Maria-Hormigos R, Jurado-Sanchez B, Escarpa A. Self-propelled micromotors for naked-eye detection of phenylenediamines isomers. Anal Chem. 2018;90:9830–7.CrossRefGoogle Scholar
  24. 24.
    Avila E, Zhao M, Campuzano S, Ricci F, Pingrron J, Mascini M, et al. Rapid micromotor-based naked-eye immunoassay. Talanta. 2017;167:651–7.CrossRefGoogle Scholar
  25. 25.
    Cinti S, Gao W, Li J, Palleschi G, Wang J. Microengine-assisted electrochemical measurements at printable sensor strips. Chem Commun. 2015;51:8668–71.CrossRefGoogle Scholar
  26. 26.
    Yang Q, Xu Q, Jiang H. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev. 2017;46:4774–808.CrossRefGoogle Scholar
  27. 27.
    Liu J, Fan F, Feng Z, Zhang L, Bai S, Yang Q, et al. From hollow nanosphere to Hollow microsphere: mild buffer provides easy access to tunable silica structure. J Phys Chem C. 2008;112:16445–51.CrossRefGoogle Scholar
  28. 28.
    Joo JB, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, et al. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energ Environ Sci. 2012;5:6321–7.CrossRefGoogle Scholar
  29. 29.
    Hu J, Chen M, Fang X, Wu L. Fabrication and application of inorganic hollow spheres. Chem Soc Rev. 2011;40:5472–91.CrossRefGoogle Scholar
  30. 30.
    Buchmaier C, Glaenzer M, Torvisco A, Peter P, Karin W, Birgit K, et al. Nickel sulfide thin films and nanocrystals synthesized from nickel xanthate precursors. J Mater Sci. 2017;52:10898–914.CrossRefGoogle Scholar
  31. 31.
    Yu X, Yu L, Wu HB, Lou XWD. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem Int Ed. 2015;54:5331–5.CrossRefGoogle Scholar
  32. 32.
    Guo Y, Deng L, Li J, Guo S, Wang E, Dong S. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano. 2011;5:1282–90.CrossRefGoogle Scholar
  33. 33.
    Lin Y, Chang Y, Chen G, Chang Y, Chang Y. Effects of Ag-doped NiTiO3 on photoreduction of methylene blue under UV and visible light irradiation. J Alloy Compd. 2009;479:785–90.CrossRefGoogle Scholar
  34. 34.
    Wirtz M, Martin CR. Template fabricated gold nanowires and nanotubes. Adv Mater. 2010;15:455–8.CrossRefGoogle Scholar
  35. 35.
    Li Y, Wang H, Zhang H, Liu P, Wang Y, Fang W, et al. A {0001} faceted single crystal NiS nanosheet electrocatalyst for dye-sensitised solar cells: sulfur-vacancy induced electrocatalytic activity. Chem Commun. 2014;50:5569–71.CrossRefGoogle Scholar
  36. 36.
    Chen Z, Sun P, Fan B, Zhang Z, Fang X. In situ template-free ion-exchange process to prepare visible-light-active g-C3N4/NiS hybrid photocatalysts with enhanced hydrogen evolution activity. J Phys Chem C. 2014;118:7801–7.CrossRefGoogle Scholar
  37. 37.
    Sui N, Liu F, Wang K, Xie F, Wang L, Tang J, et al. Nano Au-Hg amalgam for Hg2+ and H2O2 detection. Sens Actuators B. 2017;252:1010–5.CrossRefGoogle Scholar
  38. 38.
    An Q, Sun C, Li D, Xu K, Guo J, Wang C. Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Inter. 2013;5:13248–57.CrossRefGoogle Scholar
  39. 39.
    Reanpang P, Themsirimongkon S, Saipanya S, Chailapakul O, Jakmunee J. Cost-effective flow injection amperometric system with metal nanoparticle loaded carbon nanotube modified screen printed carbon electrode for sensitive determination of hydrogen peroxide. Talanta. 2015;144:868–74.CrossRefGoogle Scholar
  40. 40.
    Wannajuk K, Jamkatoke M, Tuntulani T, Tomapatanaget B. Highly specific-glucose fluorescence sensing based on boronic anthraquinone derivatives via the GOx enzymatic reaction. Tetrahedron. 2012;68:8899–904.CrossRefGoogle Scholar
  41. 41.
    Silva RAB, Montes RHO, Richter EM, Munoz RAA. Rapid and selective determination of hydrogen peroxide residues in milk by batch injection analysis with amperometric detection. Food Chem. 2012;133:200–4.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hongying Liu
    • 1
  • Huan Ma
    • 1
  • Hanxiao Xu
    • 1
  • Jiajun Wen
    • 1
  • Zhiheng Huang
    • 1
  • Yubin Qiu
    • 1
  • Kai Fan
    • 1
  • Dujuan Li
    • 1
  • Chunchuan Gu
    • 2
    Email author
  1. 1.College of Life Information Science & Instrument EngineeringHangzhou Dianzi UniversityHangzhouChina
  2. 2.Deparment of Clinical LaboratoryHangzhou Cancer HospitalHangzhouChina

Personalised recommendations