Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 9, pp 1887–1894 | Cite as

Disposable carbon nanotube scaffold films for fast and reliable assessment of total α1-acid glycoprotein in human serum using adsorptive transfer stripping square wave voltammetry

  • Tania Sierra
  • Silvia Dortez
  • María Cristina González
  • F. Javier Palomares
  • Agustin G. CrevillenEmail author
  • Alberto EscarpaEmail author
Research Paper
Part of the following topical collections:
  1. Nanoparticles for Bioanalysis

Abstract

Alpha-1-acid glycoprotein (AGP) is a serum glycoprotein whose levels are increased two or three times during disease or injury. This makes it a potential biomarker for inflammatory bowel diseases and sepsis. Consequently, fast, simple, and cheap analytical methods for prognosis, diagnosis, and follow-up of these diseases are demanded. In this work, we propose a simple electrochemical approach based on carbon nanotubes scaffold films (CNSFs) for total AGP determination in serum samples. Firstly, AGP is labeled with an electrochemical tag (osmium(VI) complex), and then the total amount of AGP is quantified by adsorptive transfer stripping square wave voltammetry (AdTSWV). Multi-walled carbon nanotubes scaffold films (MWSFs) yielded the best analytical performance in terms of sensitivity with a good limit of detection of 0.6 mg L−1 for AGP determination in serum samples, in less than 20 min. A simplified AGP calibration and its sequential serum sample analysis strategy with good accuracy (81%) and excellent reproducibility (RSD < 1%) was additionally proposed to meet the point-of-care/needs requirements.

Graphical abstract

Multi-walled carbon nanotubes scaffold films for total AGP determination on disposable platforms integrating single-point calibration and sequential sample analysis.

Keywords

Alpha-1-acid glycoprotein Human serum Ligand exchange method Osmium(VI) Electrochemical tag Carbon nanotube 

Abbreviations

AdTSWV

Adsorptive transfer stripping square wave voltammetry

AGP

Alpha-1-acid glycoprotein

BR

Britton–Robinson buffer

CNM

Carbon nanomaterial

CNSF

Carbon nanotube scaffold film

CNT

Carbon nanotubes

MWCNT

Multi-walled carbon nanotubes

MWSF

Multi-walled scaffold film

POCT

Point-of-care testing

py

Pyridine

SPCE

Screen-printed carbon electrode

SWCNT

Single-walled carbon nanotubes

SWSF

Single-walled scaffold film

TEMED

N,N,N′,N′-Tetramethylethylenediamine

Notes

Funding information

This work has been financially supported by the NANOAVANSENS program from the Community of Madrid (S2013/MIT-3029), the Spanish Ministry of Economy, Industry and Competitiveness (CTQ2017-86441-C2-1-R), and the MINECO (MAT2016-80394-R). T.S. acknowledges the FPI fellowship from the University of Alcala.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2018_1419_MOESM1_ESM.pdf (158 kb)
ESM 1 (PDF 157 kb)

References

  1. 1.
    Puerta A, Díez-Masa JC, Martín-Álvarez PJ, Martín-Ventura JL, Barbas C, Tuñón J, et al. Study of the capillary electrophoresis profile of intact α-1-acid glycoprotein isoforms as a biomarker of atherothrombosis. Analyst. 2011;136:816–22.CrossRefGoogle Scholar
  2. 2.
    Zhang C, Hage DS. Glycoform analysis of alpha1-acid glycoprotein by capillary electrophoresis. J Chromatogr A. 2016;1475:102–9.CrossRefGoogle Scholar
  3. 3.
    Lacunza I, Sanz Perucha J, Díez-Masa JC, Frutos M. CZE of human alpha-1-acid glycoprotein for qualitative and quantitative comparison of samples from different pathological conditions. Electrophoresis. 2006;27:4205–14.CrossRefGoogle Scholar
  4. 4.
    Shiyan SD, Bovin NV. Carbohydrate composition and immunomodulatory activity of different glycoforms of α1-acid glycoprotein. Glycoconj J. 1997;14:631–8.CrossRefGoogle Scholar
  5. 5.
    Beeram S, Bi C, Zheng X, Hage DS. Chromatographic studies of drug interactions with alpha1-acid glycoprotein by ultrafast affinity extraction and peak profiling. J Chromatogr A. 2017;1497:92–101.CrossRefGoogle Scholar
  6. 6.
    Vermeire S, Van Assche G, Rutgeerts P. Oratory markers in IBD: magic, or unnecessary toys? Gut. 2006;55:426–31.CrossRefGoogle Scholar
  7. 7.
    Ipek IO, Saracoglu M, Bozaykut A. α1-Acid glycoprotein for the early diagnosis of neonatal sepsis. J. Matern.-Fetal Neonatal Med. 2010;23:617–21.CrossRefGoogle Scholar
  8. 8.
    Brignola C, Campieri M, Bazzocchi G, et al. A laboratory index for predicting relapse in asymptomatic patients with Crohn’s disease. Gastroenterology. 1986;91:1490–4.CrossRefGoogle Scholar
  9. 9.
    Miranda-García P, Chaparro M, Gisbert JP. Correlation between serologicalbiomarkers and endoscopic activity in patients with inflammatory bowel disease. Gastroenterol Hepatol. 2016;39:508–15.CrossRefGoogle Scholar
  10. 10.
    Benitez JM, Meuwis MA, Reenaers C, Van Kemseke C, Meunier P, Louis E. Role of endoscopy, cross-sectional imaging and biomarkers in Crohn’s disease monitoring. Gut. 2013;62:1806–16.CrossRefGoogle Scholar
  11. 11.
    Suzuki S. Highly sensitive methods using liquid chromatography and capillary electrophoresis for quantitative analysis of glycoprotein glycans. Chromatography. 2014;35:1–22.CrossRefGoogle Scholar
  12. 12.
    Zhang C, Bi C, Clarke W, Hage DS. Glycoform analysis of alpha1-acid glycoprotein based on capillary electrophoresis and electrophoretic injection. J Chromatogr A. 2017;1523:114–22.CrossRefGoogle Scholar
  13. 13.
    Yazawa S, Yokobori T, Kaira K, Kuwano H, Asao T. A new enzyme immunoassay for the determination of highly sialylated and fucosylated human α1-acid glycoprotein as a biomarker of tumorigenesis. Clin Chim Acta. 2018;478:120–8.CrossRefGoogle Scholar
  14. 14.
    Christiansen MS, Blirup-Jensen S, Foged L, Larsen M, Magid E. A particle-enhanced turbidimetric immunoassay for quantitative determination of orosomucoid in urine: development, validation and reference values. Clin Chem Lab Med. 2004;42:1168–77.CrossRefGoogle Scholar
  15. 15.
    Escarpa A. Food electroanalysis: sense and simplicity. Chem Record. 2012;12:72–91.Google Scholar
  16. 16.
    Suprun EV, Shumyantseva VV, Archakov AI. Protein electrochemistry: Application in medicine. Areview. Electrochim Acta. 2014;140:72–82.Google Scholar
  17. 17.
    Palecek E, Tkac J, Bartosik M, Bertok T, Ostatna V, Palecek J. Electrochemistry of nonconjugated Proteins and Glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev. 2015;115:2045–108.Google Scholar
  18. 18.
    Bertok T, Klukova L, Sediva A, Kasak P, Semak V, Micusik M, et al. Ultrasensitive Impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Anal Chem. 2013;85:7324–32.Google Scholar
  19. 19.
    Yang C, Gu B, Xu C, Xiaoyong X. Self-assembled ZnO quantum dot bioconjugates for direct electrochemical determination of allergen. J Electroanal Chem. 2011;660:97–100.CrossRefGoogle Scholar
  20. 20.
    Mayorga-Martinez CC, Latiff NM, Sheng Eng AY, Sofer Z, Pumera M. Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation. Anal Chem. 2016;88:10074–9.CrossRefGoogle Scholar
  21. 21.
    Toh RJ, Mayorga-Martinez CC, Sofer Z, Pumera M. MoSe2 nanolabels for electrochemical immunoassays. Anal Chem. 2016;88:12204–9.CrossRefGoogle Scholar
  22. 22.
    Trefulka M, Paleček E. Voltammetry of Os(VI)-modified polysaccharides at carbon electrodes. Electroanalysis. 2009;21:1763–6.CrossRefGoogle Scholar
  23. 23.
    Trefulka M, Paleček E. Direct chemical modification and voltammetric detection of glycans in glycoproteins. Electrochem Commun. 2014;48:52–5.CrossRefGoogle Scholar
  24. 24.
    Trefulka M, Paleček E. Modification of poly- and oligosaccharides with Os(VI) pyridine. Voltammetry of the Os(VI) adducts obtained by ligand exchange. Electroanalysis. 2013;25:1813–7.CrossRefGoogle Scholar
  25. 25.
    Sierra T, González MC, Moreno B, Crevillen AG, Escarpa A. Total α1-acid glycoprotein determination in serum samples using disposable screen-printed electrodes and osmium (VI) as electrochemical tag. Talanta. 2018;180:206–10.CrossRefGoogle Scholar
  26. 26.
    Martin A, Escarpa A. Graphene: the cutting-edge interaction between chemistry and electrochemistry. Trends Anal Chem. 2014;56:13–26.CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Wu Z, Li N, Pu Y, Wang B, Zhang T, et al. Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application. Mat Sci Eng C. 2017;77:1363–75.CrossRefGoogle Scholar
  28. 28.
    Kuila T, Bose S, Khanra P, Kumar A, Nam M, Kim H, et al. Recent advances in graphene-based biosensors. Biosens Bioelectron. 2011;26:4637–48.CrossRefGoogle Scholar
  29. 29.
    Pumera M. Graphene in biosensing. Mat Today. 2011;14:308–15.CrossRefGoogle Scholar
  30. 30.
    Pumera M, Ambrosi A, Bonanni A, Khim Chng EL, Ling Poh H. Graphene for electrochemical sensing and biosensing. Trends Anal Chem. 2010;29:954–65.CrossRefGoogle Scholar
  31. 31.
    Power AC, Gorey B, Chandra S, Chapman J. Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechn Rev. 2017;7:1–48.Google Scholar
  32. 32.
    Agüí L, Yáñez-Sedeño P, Pingarrón JM. Role of carbon nanotubes in electroanalytical chemistry. A review. Anal Chim Acta. 2008;622:11–47.CrossRefGoogle Scholar
  33. 33.
    Gomez FJ, Martín A, Silva MF, Escarpa A. Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim Acta. 2015;182:1925–31.CrossRefGoogle Scholar
  34. 34.
    Merkoçi A, Pumera M, Llopis X, Pérez B, del Valle M, Alegret S. New materials for electrochemical sensing VI: carbon nanotubes. Trends Anal Chem. 2005;24:826–38.CrossRefGoogle Scholar
  35. 35.
    Wildgoose GG, Banks CE, Leventis HC, Compton RG. Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta. 2006;152:187–214.CrossRefGoogle Scholar
  36. 36.
    Baptista FR, Belhout SA, Giordani S, Quinn SJ. Recent developments in carbon nanomaterial sensors. Chem Soc Rev. 2015;44:4433–53.CrossRefGoogle Scholar
  37. 37.
    Yang Y, Yang X, Yang Y, Yuan Q. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon. 2018;129:380–95.CrossRefGoogle Scholar
  38. 38.
    Rivas GA, Rodríguez MC, Rubianes MD, Gutiérres FA, Eguíleas M, Dalmasso PR, et al. Carbon nanotubes-based electrochemical (bio)sensors for biomarkers. App. Mat. Today. 2017;9:566–88.CrossRefGoogle Scholar
  39. 39.
    Wang L, Pumera M. Electrochemical catalysis at low dimensional carbons: graphene, carbon nanotubes and beyond – a review. App Mat Today. 2016;5:134–41.CrossRefGoogle Scholar
  40. 40.
    Gomez FJ, Martín A, Silva MF, Escarpa A. Microchip electrophoresis-single wall carbon nanotube press-transferred electrodes for fast and reliable electrochemical sensing of melatonin and its precursors: nanoanalysis. Electrophoresis. 2015;36:1880–5.CrossRefGoogle Scholar
  41. 41.
    Martín A, Vázquez L, Escarpa A. Carbon nanomaterial scaffold films with conductivity at micro and sub-micron levels. J Mat Chem A. 2016;34:13142.CrossRefGoogle Scholar
  42. 42.
    Pumera M, Escarpa A. Nanomaterials as electrochemical detectors in microfluidics and CE: fundamentals, designs, and applications. Electrophoresis. 2009;30:3315–23.CrossRefGoogle Scholar
  43. 43.
    Martin A, Escarpa A. Tailor designed exclusive carbon nanomaterial electrodes for off-chip and on-chip electrochemical detection. Microchim Acta. 2017;184:307–13.CrossRefGoogle Scholar
  44. 44.
    García-Carmona L, Moreno-Guzmán M, Sierra T, González MC, Escarpa A. Filtered carbon nanotubes-based electrodes for rapid sensing and monitoring of L-tyrosine in plasma and whole blood samples. Sensors Actuators B Chem. 2018;259:762–7.CrossRefGoogle Scholar
  45. 45.
    Stumpe M, Miller C, Morton N, Bell G, Watson DG. High-performance liquid chromatography determination of alpha1-acid glycoprotein in small volumes of plasma from neonates. J Chromatogr. 2006;831:81–4.Google Scholar
  46. 46.
    Cai Z, Li F, Wu P, Ji L, Zhang H, Cai C, et al. Synthesis of nitrogen-doped graphene quantum dots at low temperature for electrochemical sensing trinitrotoluene. Anal Chem. 2015;87:11803–11.CrossRefGoogle Scholar
  47. 47.
    Gutierrez MC, Pico F, Rubio F, Amarilla JM, Palomares FJ, Ferrer ML, et al. PO15-PEO22-PPO15 block copolymer assisted synthesis of monolithic macro- and microporous carbon aerogels exhibiting high conductivity and remarkable capacitance. J Mater Chem. 2009;19:1236–40.CrossRefGoogle Scholar
  48. 48.
    Della Pelle F, Di Battista R, Vázquez L, Palomares FJ, Del Carlo M, Sergi M, et al. Press-transferred carbon black nanoparticles for class-selective antioxidant electrochemical detection. Appl Mat Today. 2017;9:29–36.CrossRefGoogle Scholar
  49. 49.
    Nagy B, Toth A, Savina I, Mikhalovsky S, Mikhalovska L, Geissler E, et al. Double probe approach to protein adsorption on porous carbon surfaces. Carbon. 2017;112:103–10.CrossRefGoogle Scholar
  50. 50.
    Mahmoodi Y, Mehrnejad F, Khalifeh K. Understanding the interactions of human follicle stimulating hormone with single-walled carbon nanotubes by moleculardynamics simulation and free energy analysis. Eur Biophys J. 2018;47:49–57.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tania Sierra
    • 1
    • 2
  • Silvia Dortez
    • 1
  • María Cristina González
    • 1
    • 2
  • F. Javier Palomares
    • 3
  • Agustin G. Crevillen
    • 4
    Email author
  • Alberto Escarpa
    • 1
    • 2
    Email author
  1. 1.Department of Analytical Chemistry, Physical Chemistry and Chemical EngineeringUniversity of AlcalaAlcalá de HenaresSpain
  2. 2.Chemical Research Institute “Andrés M. del Río” (IQAR)University of AlcaláAlcalá de HenaresSpain
  3. 3.Instituto de Ciencia de Materiales de Madrid, CSICMadridSpain
  4. 4.Department of Analytical Sciences, Faculty of SciencesUniversidad Nacional de Educación a Distancia (UNED)MadridSpain

Personalised recommendations