New structural insights into the role of TROVE2 complexes in the on-set and pathogenesis of systemic lupus erythematosus determined by a combination of QCM-D and DPI

  • Augusto Juste-Dolz
  • Noelle M. do Nascimento
  • Isidro Monzó
  • Elena Grau-García
  • Jose A. Román-Ivorra
  • José Luis Lopez-Paz
  • Jorge Escorihuela
  • Rosa Puchades
  • Sergi Morais
  • David Gimenez-RomeroEmail author
  • Ángel MaquieiraEmail author
Research Paper
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry


The mechanism of self-recognition of the autoantigen TROVE2, a common biomarker in autoimmune diseases, has been studied with a quartz crystal microbalance with dissipation monitoring (QCM-D) and dual polarization interferometry (DPI). The complementarity and remarkable analytical features of both techniques has allowed new insights into the onset of systemic lupus erythematosus (SLE) to be achieved at the molecular level. The in vitro study for SLE patients and healthy subjects suggests that anti-TROVE2 autoantibodies may undergo an antibody bipolar bridging. An epitope-paratope-specific binding initially occurs to activate a hidden Fc receptor in the TROVE2 tertiary structure. This bipolar mechanism may contribute to the pathogenic accumulation of anti-TROVE2 autoantibody immune complex in autoimmune disease. Furthermore, the specific calcium-dependent protein-protein bridges point out at how the TRIM21/TROVE2 association might occur, suggesting that the TROVE2 protein could stimulate the intracellular immune signaling via the TRIM21 PRY-SPRY domain. These findings may help to better understand the origins of the specificity and affinity of TROVE2 interactions, which might play a key role in the SLE pathogenesis. This manuscript gives one of the first practical applications of two novel functions (−df/dD and Δh/molec) for the analysis of the data provided by QCM-D and DPI. In addition, it is the first time that QCM-D has been used for mapping hidden Fc receptors as well as linear epitopes in a protein tertiary structure.

Graphical abstract


TROVE2 Antibody bipolar bridging Systemic lupus erythematosus Epitope mapping QCM-D Dual polarization interferometry 



We would like to thank Sylvia Daunert for her invaluable help with the discussion of the paper.

Funding information

Furthermore, we acknowledge financial support from the Generalitat Valenciana (GVA-PROMETEOII/2014/040) as well as the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under award numbers CTQ2013-45875-R and CTQ2013-42914-R.

Compliance with ethical standards

Competing interests

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1407_MOESM1_ESM.pdf (1005 kb)
ESM 1 (PDF 0.98 MB)


  1. 1.
    Kakatia S, Teronpia R, Barmanb B. Frequency, pattern and determinants of flare in systemic lupus erythematosus: a study from North East India. Egypt Rheumatol. 2015;37:S55–9.CrossRefGoogle Scholar
  2. 2.
    Kuhn A, Wenzel J, Weyd H. Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: a critical review. Clinic Rev Allerg Immunol. 2014;47:148–62.CrossRefGoogle Scholar
  3. 3.
    American Lupus Foundation. 2016.
  4. 4.
    World Health Organization. Environmental health criteria 236. Geneva: WHO Press; 2006.Google Scholar
  5. 5.
    Li W, Titov AA, Morel L. An update on lupus animal models. Curr Opin Rheumatol. 2017;29:1040–8711.CrossRefGoogle Scholar
  6. 6.
    Routsias JG, Tzioufas AG, Moutsopoulos HM. The clinical value of intracellular autoantigens B-cell epitopes in systemic rheumatic diseases. Clin Chim Acta. 2004;340:1–25.CrossRefGoogle Scholar
  7. 7.
    Franceschini F, Cavazzana I. Anti-Ro/SSA and La/SSB antibodies. Autoimmunity. 2005;38:55–63.CrossRefGoogle Scholar
  8. 8.
    Kelekar A, Saitta MR, Keene JD. Molecular composition of Ro small ribonucleoprotein complexes in human cells. Intracellular localization of the 60- and 52-kD proteins. J Clin Ivest. 1994;93:1637–44.CrossRefGoogle Scholar
  9. 9.
    Slobbe RL, Pluk W, van Venrooij WJ, Prujin GJM. Ro ribonucleoprotein assembly in vitro: identification of RNA-protein and protein-protein interactions. J Mol Biol. 1992;2:361–6.CrossRefGoogle Scholar
  10. 10.
    Chen X, Taylor DW, Fowler CC, Galan JE, Wang HW, Wolin SL. An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell. 2013;153:166–77.CrossRefGoogle Scholar
  11. 11.
    Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell. 2005;121:529–39.CrossRefGoogle Scholar
  12. 12.
    Reed JH, Gordon TP. Autoimmunity: Ro60-associated RNA takes its toll on disease pathogenesis. Nat Rev Rheumatol. 2016;12:136–8.CrossRefGoogle Scholar
  13. 13.
    Sim S, Weinberg DE, Fuchs G, Choi K, Chung J, Wolin SL. The subcellular distribution of an RNA quality control protein, the Ro autoantigen, is regulated by noncoding Y RNA binding. Mol Biol Cell. 2009;20:1555–64.CrossRefGoogle Scholar
  14. 14.
    Reed JH, Jackson MW, Gordon TP. A B cell apotope of Ro 60 in systemic lupus erythematosus. Arthritis Rheum. 2008;58:1125–9.CrossRefGoogle Scholar
  15. 15.
    Wolin SL, Reinisch KM. The Ro 60 kDa autoantigen comes into focus: interpreting epitope mapping experiments on the basis of structure. Autoimmun Rev. 2006;5:367–72.CrossRefGoogle Scholar
  16. 16.
    Routsias JG, Tzioufas AG. B-cell epitopes of the intracellular autoantigens Ro/SSA and La/SSB: tools to study the regulation of the autoimmune response. J Autoimmun. 2010;35:256–64.CrossRefGoogle Scholar
  17. 17.
    Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin a domains: widely dispersed domains with roles in cell adhesion and elsewere. Mol Bio Cell. 2002;13:3369–87.CrossRefGoogle Scholar
  18. 18.
    Lacy DB, Wigelsworth DJ, Scobie HM, Young JA, Collier RJ. Crystal structure of the von Willebrand factor a domain of human capillary morphogenesis protein 2: an anthrax toxin receptor. Proc Natl Acad Sci U S A. 2004;101:6367–72.CrossRefGoogle Scholar
  19. 19.
    O’Brien CA, Wolin SL. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev. 1994;8:2891–903.CrossRefGoogle Scholar
  20. 20.
    Chen X, Wolin SL. The Ro 60 autoantigen : insights into cellular function and role in autoimmunity. J Mol Med (Berl). 2004;82:232–9.CrossRefGoogle Scholar
  21. 21.
    Escorihuela J, González-Martínez MA, López-Paz JL, Puchades R, Maquieira A, Gimenez-Romero D. Dual-polarization interferometry: a novel technique to light up the nanomolecular world. Chem Rev. 2014;115:265–94.CrossRefGoogle Scholar
  22. 22.
    do Nascimento NM, Juste-Dolz A, Bueno PR, Monzó I, Tejero R, Lopez-Paz JL, et al. Mapping molecular binding by means of conformational dynamics measurements. RSC Adv. 2018;8:867–76.CrossRefGoogle Scholar
  23. 23.
    do Nascimento NM, Juste-Dolz A, Grau-García E, Román-Ivorra J, Puchades R, Maquieira A, et al. Label-free piezoelectric biosensor for prognosis and diagnosis of systemic lupus erythematosus. Biosens. Bioelectron. 2016;90:166–73.CrossRefGoogle Scholar
  24. 24.
    Seo MH, Park J, Kim E, Hohng S, Kim HS. Protein conformational dynamics dictate the binding affinity for a ligand. Nat Commun. 2014;5:3724.CrossRefGoogle Scholar
  25. 25.
    Lakshmanan RS, Efremov V, O’Donnell JS, Killard AJ. Measurement of the viscoelastic properties of blood plasma clot formation in response to tissue factor concentration-dependent activation. Anal Bioanal Chem. 2016;408:6581–8.CrossRefGoogle Scholar
  26. 26.
    Fakhrullin RF, Vinter VG, Zamaleeva AI, Matveeva MV, Kourbanov RA, Temesgen BK, et al. Quartz crystal microbalance immunosensor for the detection of antibodies to double-stranded DNA. Anal Bioanl Chem. 2007;388:367–75.CrossRefGoogle Scholar
  27. 27.
    Shen F, Rojas OJ, Genzer J, Gurgel PV, Carbonell RG. Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. Anal Bioanl Chem. 2015;408:1829–41.CrossRefGoogle Scholar
  28. 28.
    Fogarty AC, Laage D. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation. J Phys Chem B. 2014;118:7715–29.CrossRefGoogle Scholar
  29. 29.
    Born B, Kim SJ, Ebbinghaus S, Gruebelebc M, Havenith M. The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discuss. 2009;141:161–73.CrossRefGoogle Scholar
  30. 30.
    Yoshimi R, Ueda A, Ozato K, Ishigatsubo Y. Clinical and pathological roles of Ro/SSA autoantibody system. Clin Dev Immunol. 2012;2012:606195.CrossRefGoogle Scholar
  31. 31.
    Boire G, Gendron M, Monast N, Bastin B, Ménard HA. Purification of antigenically intact Ro ribonucleoproteins; biochemical and immunological evidence that the 52-kD protein is not a Ro protein. Clin Exp Immunol. 1995;100:489–98.CrossRefGoogle Scholar
  32. 32.
    Gazzaruso C, Montecucco CM, Geroldi D, Garzaniti A, Finardi G. Severe hypercalcemia and systemic lupus erythematosus. Joint Bone Spine. 2000;67:485–8.PubMedGoogle Scholar
  33. 33.
    Hassan AB, Lundberg IE, Isenberg D, Wahren-Herlenius M. Serial analysis of Ro/SSA and La/SSB antibody levels and correlation with clinical disease activity in patients with systemic lupus erythematosus. Scand J Rheumatol. 2002;31:133–9.CrossRefGoogle Scholar
  34. 34.
    Huang RY, Chen G. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem. 2014;406:6541–58.CrossRefGoogle Scholar
  35. 35.
    Yu F, Roy S, Arevalo E, Schaeck J, Wang J, Holte K, et al. Characterization of heparin-protein interaction by saturation transfer difference (STD) NMR. Anal Bioanal Chem. 2014;406:3079–89.CrossRefGoogle Scholar
  36. 36.
    Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86:369–408.CrossRefGoogle Scholar
  37. 37.
    Gaipl US, Kuhn A, Sheriff A, Munoz LE, Franz S, Voll RE, et al. Clearance of apoptotic cells in human SLE. Curr Dir Autoimmun. 2006;9:173–87.PubMedGoogle Scholar
  38. 38.
    Falati S, Edmead CE, Poole AW. Glycoprotein Ib-V-IX, a receptor for Von Willebrand factor, couples physically and functionally to the Fc receptor gamma-chain, Fyn, and Lyn to activate human platelets. Blood. 1999;94:1648–56.PubMedGoogle Scholar
  39. 39.
    Muñoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 2010;6:280–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Augusto Juste-Dolz
    • 1
  • Noelle M. do Nascimento
    • 1
  • Isidro Monzó
    • 2
  • Elena Grau-García
    • 3
  • Jose A. Román-Ivorra
    • 3
  • José Luis Lopez-Paz
    • 4
  • Jorge Escorihuela
    • 5
  • Rosa Puchades
    • 4
  • Sergi Morais
    • 4
  • David Gimenez-Romero
    • 2
    Email author
  • Ángel Maquieira
    • 4
    Email author
  1. 1.Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaValenciaSpain
  2. 2.Departamento de Química-FísicaUniversitat de ValènciaBurjassotSpain
  3. 3.Departamento de Reumatología, Hospital Universitario y Politécnico La Fe, and Rheumatology Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
  4. 4.Departamento de QuímicaUniversitat Politècnica de ValènciaValenciaSpain
  5. 5.Departamento de Química OrgánicaUniversitat de ValènciaBurjassotSpain

Personalised recommendations