Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 1, pp 79–96 | Cite as

Profiling of nanoparticle–protein interactions by electrophoresis techniques

  • Mohammad ZareiEmail author
  • Jamal Aalaie
Review

Abstract

The use of nanomaterials in the chemical, biomedical, and biotechnological sciences is growing, increasing the possible release of these materials into the environment and contact with living organisms. Because of their large surface area, biomolecules can be adsorbed on the surface of nanomaterials. Proteins bind to the surface of nanoparticles (NPs), forming a biological layer around the NP, the “protein corona,” which gives new characteristics to the NPs in biological milieu and may affect biomedical applications or induce nanotoxicological effects. Therefore, the development of analytical tools for identification of NP protein corona behavior is essential. Techniques such as spectroscopy, chromatography, calorimetry, and electrophoresis have been used to investigate the interaction of NPs with proteins. This review describes recent developments in the application of electrophoresis techniques for profiling of NP–protein interactions. Further, we provide an overview of directions and challenges in the application of electrophoresis methods for the investigation of NP–protein structures.

Graphical abstract

Keywords

Separation Electrophoresis Mass spectrometry Protein corona Nanoparticle 

Abbreviations

C3

Complement component 3

CD

Circular dichroism

CE

Capillary electrophoresis

DIGE

Difference gel electrophoresis

ICP

Inductively coupled plasma

ITC

Isothermal titration calorimetry

LC

Liquid chromatography

MS

Mass spectrometry

MS/MS

Tandem mass spectrometry

NMR

Nuclear magnetic resonance

NP

Nanoparticle

PDADMAC

Poly(diallyldimethylammonium chloride)

PAGE

Polyacrylamide gel electrophoresis

PSS

Poly(sodium 4-styrenesulfonate)

SDS

Sodium dodecyl sulfate

SILAC

Stable isotope labeling by amino acids in cell culture

SPIO

Superparamagnetic iron oxide

SPR

Surface plasmon resonance

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests

References

  1. 1.
    Zamborini FP, Bao L, Dasari R. Nanoparticles in measurement science. Anal Chem. 2011;84(2):541–76.Google Scholar
  2. 2.
    Zarei M, Zarei M, Ghasemabadi M. Nanoparticle improved separations: from capillary to slab gel electrophoresis. Trends Anal Chem. 2016;86:56–74.Google Scholar
  3. 3.
    Zarei M, Zarei M. Self-Propelled micro/nanomotors for sensing and environmental remediation. Small. 2018;14(30):1800912.Google Scholar
  4. 4.
    Aitken R, Chaudhry M, Boxall A, Hull M. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med C. 2006;56(5):300–6.Google Scholar
  5. 5.
    Darr JA, Zhang J, Makwana NM, Weng X. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev. 2017;117(17):11125–38.PubMedGoogle Scholar
  6. 6.
    Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1):83–96.PubMedGoogle Scholar
  7. 7.
    Zarei M. Portable biosensing devices for point-of-care diagnostics: recent developments and applications. Trends Anal Chem. 2017;91:26–41.Google Scholar
  8. 8.
    Zarei M. Advances in point-of-care technologies for molecular diagnostics. Biosens Bioelectron. 2017;98:494–506.PubMedGoogle Scholar
  9. 9.
    Zarei M. Infectious pathogens meet point-of-care diagnostics. Biosens Bioelectron. 2018;106:193–203.PubMedGoogle Scholar
  10. 10.
    Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y, et al. The light‐induced field‐effect solar cell concept–perovskite nanoparticle coating introduces polarization enhancing silicon cell efficiency. Adv. Mater. 2017;29(18):1606370.Google Scholar
  11. 11.
    Son D-Y, Im J-H, Kim H-S, Park N-G. 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J. Phys. Chem. C. 2014;118(30):16567–73.Google Scholar
  12. 12.
    Choudhury S, Mangal R, Agrawal A, Archer LA. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat Commun. 2015;6:10101.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lin L, Pan Q. ZnFe2O4@ C/graphene nanocomposites as excellent anode materials for lithium batteries. J Mater Chem A. 2015;3(4):1724–9.Google Scholar
  14. 14.
    Singh D, Timofeeva EV, Moravek MR, Cingarapu S, Yu W, Fischer T, et al. Use of metallic nanoparticles to improve the thermophysical properties of organic heat transfer fluids used in concentrated solar power. Sol. Energy. 2014;105:468–78.Google Scholar
  15. 15.
    Minkowycz W, Sparrow EM, Abraham JP, editors. Nanoparticle heat transfer and fluid flow. Boca Raton: CRC Press; 2016.Google Scholar
  16. 16.
    Zhang H, Nikolov A, Wasan D. Enhanced oil recovery (EOR) using nanoparticle dispersions: underlying mechanism and imbibition experiments. Energy Fuels. 2014;28(5):3002–9.Google Scholar
  17. 17.
    Chen C, Wang S, Kadhum MJ, Harwell JH, Shiau B-J. Using carbonaceous nanoparticles as surfactant carrier in enhanced oil recovery: a laboratory study. Fuel. 2018;222:561–8.Google Scholar
  18. 18.
    Sofla SJD, James LA, Zhang Y. Insight into the stability of hydrophilic silica nanoparticles in seawater for enhanced oil recovery implications. Fuel. 2018;216:559–71.Google Scholar
  19. 19.
    Rognmo A, Heldal S, Fernø M. Silica nanoparticles to stabilize CO2-foam for improved CO2 utilization: enhanced CO2 storage and oil recovery from mature oil reservoirs. Fuel. 2018;216:621–6.Google Scholar
  20. 20.
    Aalaie J. Rheological behavior of polyacrylamide/laponite nanoparticle suspensions in electrolyte media. J Macromol Sci B. 2012;51(6):1139–47.Google Scholar
  21. 21.
    Aalaie J, Vasheghani-Farahani E, Rahmatpour A, Semsarzadeh MA. Effect of montmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. Eur Polym J. 2008;44(7):2024–31.Google Scholar
  22. 22.
    Li C-C, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, et al. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology. 2017;11(5):699–709.PubMedGoogle Scholar
  23. 23.
    Clar JG, Platten WE, Baumann EJ, Remsen A, Harmon SM, Bennett-Stamper CL, et al. Dermal transfer and environmental release of CeO2 nanoparticles used as UV inhibitors on outdoor surfaces: Implications for human and environmental health. Sci Total Environ. 2018;613:714–23.PubMedGoogle Scholar
  24. 24.
    Jayaram DT, Runa S, Kemp ML, Payne CK. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. Nanoscale. 2017;9:7595.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Klein J. Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2029–30.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2050–5.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Treuel L, Malissek M, Gebauer JS, Zellner R. The influence of surface composition of nanoparticles on their interactions with serum albumin. Chem Phys Chem. 2010;11(14):3093–9.PubMedGoogle Scholar
  28. 28.
    Roach P, Farrar D, Perry CC. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc. 2006;128(12):3939–45.PubMedGoogle Scholar
  29. 29.
    Rodriguez CE, Fukuto JM, Taguchi K, Froines J, Cho AK. The interactions of 9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions. Chem Biol Interact. 2005;155(1):97–110.PubMedGoogle Scholar
  30. 30.
    Brandes N, Welzel PB, Werner C, Kroh LW. Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. J Colloid Interface Sci. 2006;299(1):56–69.PubMedGoogle Scholar
  31. 31.
    Hadjidemetriou M, Kostarelos K. Nanomedicine: evolution of the nanoparticle corona. Nat Nanotechnol. 2017;12(4):288–90.PubMedGoogle Scholar
  32. 32.
    Greenfield NJ. Applications of circular dichroism in protein and peptide analysis. Trends Anal Chem. 1999;18(4):236–44.Google Scholar
  33. 33.
    Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochem Biophys Acta. 2005;1751(2):119–39.PubMedGoogle Scholar
  34. 34.
    Shang L, Wang Y, Jiang J, Dong S. pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir. 2007;23(5):2714–21.PubMedGoogle Scholar
  35. 35.
    Wang T, Bai J, Jiang X, Nienhaus GU. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano. 2012;6(2):1251–9.PubMedGoogle Scholar
  36. 36.
    Zhang J, Yan Y-B. Probing conformational changes of proteins by quantitative second-derivative infrared spectroscopy. Anal Biochem. 2005;340(1):89–98.PubMedGoogle Scholar
  37. 37.
    Shao M, Lu L, Wang H, Luo S, Ma DDD. Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering. Microchim Acta. 2009;164(1–2):157–60.Google Scholar
  38. 38.
    Mátyus L, Szöllősi J, Jenei A. Steady-state fluorescence quenching applications for studying protein structure and dynamics. J.Photochem Photobiol B. 2006;83(3):223–36.PubMedGoogle Scholar
  39. 39.
    Royer CA. Probing protein folding and conformational transitions with fluorescence. Chem Rev. 2006;106(5):1769–84.PubMedGoogle Scholar
  40. 40.
    Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G. Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci. 2010;99(5):2200–8.PubMedGoogle Scholar
  41. 41.
    Printz M, Friess W. Simultaneous detection and analysis of protein aggregation and protein unfolding by size exclusion chromatography with post column addition of the fluorescent dye BisANS. J Pharm Sci. 2012;101(2):826–37.PubMedGoogle Scholar
  42. 42.
    Vogt A, D'Angelo C, Oswald F, Denzel A, Mazel CH, Matz MV, et al. A green fluorescent protein with photoswitchable emission from the deep sea. PLoS One. 2008;3(11):e3766.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wiedenmann J, Ivanchenko S, Oswald F, Nienhaus GU. Identification of GFP-like proteins in nonbioluminescent, azooxanthellate anthozoa opens new perspectives for bioprospecting. Mar Biotechnol. 2004;6(3):270–7.PubMedGoogle Scholar
  44. 44.
    Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PH, et al. BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci. 2011;11(5):628–38.PubMedGoogle Scholar
  45. 45.
    Hu X, Ke Y, Zhao Y, Lu S, Yu C, Peng F. Synthesis and characterization of a β-cyclodextrin modified polyacrylamide and its rheological properties by hybriding with silica nanoparticles. Colloids Surf A. 2018;548:10–8.Google Scholar
  46. 46.
    Józefczak A, Hornowski T, Rozynek Z, Skumiel A, Fossum JO. Rheological study of dextran-modified magnetite nanoparticle water suspension. Int J Thermophys. 2013;34(4):609–19.Google Scholar
  47. 47.
    Cheng Y, Wang M, Borghs G, Chen H. Gold nanoparticle dimers for plasmon sensing. Langmuir. 2011;27(12):7884–91.PubMedGoogle Scholar
  48. 48.
    Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7(12):779–86.PubMedGoogle Scholar
  49. 49.
    Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8(10):772–81.PubMedGoogle Scholar
  50. 50.
    Albanese A, Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano. 2014;8(6):5515–26.PubMedGoogle Scholar
  51. 51.
    Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010;132(16):5761–8.PubMedGoogle Scholar
  52. 52.
    Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, et al. Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir. 2012;2(25):9673–9.Google Scholar
  53. 53.
    Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012;134(4):2139–47.PubMedGoogle Scholar
  54. 54.
    Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–99.PubMedGoogle Scholar
  55. 55.
    Dobrovolskaia MA, Neun BW, Man S, Ye X, Hansen M, Patri AK, et al. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomed Nanotechnol. 2014;10(7):1453–63.Google Scholar
  56. 56.
    Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009;8(7):543–57.PubMedGoogle Scholar
  57. 57.
    Bodelón G, Costas C, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM. Gold nanoparticles for regulation of cell function and behavior. Nano Today. 2017;13(Suppl C):40–60.Google Scholar
  58. 58.
    Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–2134.Google Scholar
  59. 59.
    Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I, Lindman S, Thulin E, et al. Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci U S A. 2007;104(21):8691–6.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Stradner A, Sedgwick H, Cardinaux F, Poon WC, Egelhaaf SU, Schurtenberger P. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature. 2004;432(7016):492.PubMedGoogle Scholar
  61. 61.
    Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–66.PubMedGoogle Scholar
  62. 62.
    Li N, Zeng S, He L, Zhong W. Probing nanoparticle−protein interaction by capillary electrophoresis. Anal Chem. 2010;82(17):7460–6.PubMedGoogle Scholar
  63. 63.
    Patra A, Ding T, Engudar G, Wang Y, Dykas MM, Liedberg B, et al. Component‐specific analysis of plasma protein corona formation on gold nanoparticles using multiplexed surface plasmon resonance. Small. 2016;12(9):1174–82.PubMedGoogle Scholar
  64. 64.
    Carrillo-Carrion C, Carril M, Parak WJ. Techniques for the experimental investigation of the protein corona. Curr Opin Biotechnol. 2017;46:106–13.PubMedGoogle Scholar
  65. 65.
    Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 2007;7(4):914–20.PubMedGoogle Scholar
  66. 66.
    Shen X-C, Liou X-Y, Ye L-P, Liang H, Wang Z-Y. Spectroscopic studies on the interaction between human hemoglobin and CdS quantum dots. J Colloid Interface Sci. 2007;311(2):400–6.PubMedGoogle Scholar
  67. 67.
    Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed. 2007;46(30):5754–6.Google Scholar
  68. 68.
    Norde W, Giacomelli CE. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J Biotechnol. 2000;79(3):259–68.PubMedGoogle Scholar
  69. 69.
    Zarei M. Application of nanocomposite polymer hydrogels for ultra-sensitive fluorescence detection of proteins in gel electrophoresis. Trends Anal Chem. 2017;93:7–22.Google Scholar
  70. 70.
    Zhang H, Wu R. Proteomic profiling of protein corona formed on the surface of nanomaterial. Sci China Chem. 2015;58(5):780–92.Google Scholar
  71. 71.
    Cai X, Ramalingam R, San Wong H, Cheng J, Ajuh P, Cheng SH, et al. Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomed Nanotechnol. 2013;9(5):583–93.Google Scholar
  72. 72.
    Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol. 2009;4(9):577–80.PubMedGoogle Scholar
  73. 73.
    Laera S, Ceccone G, Rossi F, Gilliland D, Hussain R, Siligardi G, et al. Measuring protein structure and stability of protein–nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett. 2011;11(10):4480–4.PubMedGoogle Scholar
  74. 74.
    Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, et al. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature. 2009;458(7234):106.PubMedGoogle Scholar
  75. 75.
    Abdelhamid HN, Wu H-F. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Anal Chem. 2015;65:30–46.Google Scholar
  76. 76.
    Huang HL, Stasyk T, Morandell S, Dieplinger H, Falkensammer G, Griesmacher A, et al. Biomarker discovery in breast cancer serum using 2‐D differential gel electrophoresis/MALDI‐TOF/TOF and data validation by routine clinical assays. Electrophoresis. 2006;27(8):1641–50.PubMedGoogle Scholar
  77. 77.
    Katz A, Waridel P, Shevchenko A, Pick U. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol Cell Proteomics. 2007;6(9):1459–72.PubMedGoogle Scholar
  78. 78.
    Yu KH, Rustgi AK, Blair IA. Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry. J Proteome Res. 2005;4(5):1742–51.PubMedGoogle Scholar
  79. 79.
    Højlund K, Yi Z, Hwang H, Bowen B, Lefort N, Flynn CR, et al. Characterization of the human skeletal muscle proteome by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. Mol Cell Proteomics. 2008;7(2):257–67.PubMedGoogle Scholar
  80. 80.
    Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA. Rädler J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano. 2012;6(3):2532–41.PubMedGoogle Scholar
  81. 81.
    Stalmach A, Albalat A, Mullen W, Mischak H. Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications. Electrophoresis. 2013;34(11):1452–64.PubMedGoogle Scholar
  82. 82.
    García-Campaña AM, Lara FJ, Gámiz-Gracia L, Huertas-Pérez JF. Chemiluminescence detection coupled to capillary electrophoresis. Trends Anal Chem. 2009;28(8):973–86.Google Scholar
  83. 83.
    Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaële D, et al. Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2‐DE, CE and Protein Lab‐on‐chip® system. Electrophoresis. 2007;28(13):2252–61.PubMedGoogle Scholar
  84. 84.
    Matczuk M, Anecka K, Scaletti F, Messori L, Keppler BK, Timerbaev AR, et al. Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS: a case study of gold nanoparticles. Metallomics. 2015;7(9):1364–70.PubMedGoogle Scholar
  85. 85.
    Ramírez-García G, d’Orlyé F, Gutiérrez-Granados S, Martínez-Alfaro M, Mignet N, Richard C, et al. Electrokinetic Hummel-Dreyer characterization of nanoparticle-plasma protein corona: The non-specific interactions between PEG-modified persistent luminescence nanoparticles and albumin. Colloids Surf B. 2017;159:437–44.Google Scholar
  86. 86.
    Legat J, Matczuk M, Timerbaev AR, Jarosz M. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol. Anal Bioanal Chem. 2017;410(3):1151–6.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Riley KR, Sims CM, Wood IT, Vanderah DJ, Walker ML. Short-chained oligo (ethylene oxide)-functionalized gold nanoparticles: realization of significant protein resistance. Anal Bioanal Chem. 2017;410(1):145–54.PubMedGoogle Scholar
  88. 88.
    Wang J, Li J, Li J, Qin Y, Wang C, Qiu L, et al. In-capillary self-assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis. Electrophoresis. 2015;36(14):1523–8.PubMedGoogle Scholar
  89. 89.
    Stutz H. Protein attachment onto silica surfaces–a survey of molecular fundamentals, resulting effects and novel preventive strategies in CE. Electrophoresis. 2009;30(12):2032–61.PubMedGoogle Scholar
  90. 90.
    Hajba L, Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins. Trends Anal Chem. 2017;90:38–44.Google Scholar
  91. 91.
    Yeung KK-C, Atwal KK, Zhang H. Dynamic capillary coatings with zwitterionic surfactants for capillary isoelectric focusing. Analyst. 2003;128(6):566–70.PubMedGoogle Scholar
  92. 92.
    Nehmé R, Perrin C, Cottet H, Blanchin M-D, Fabre H. Stability of capillaries coated with highly charged polyelectrolyte monolayers and multilayers under various analytical conditions—application to protein analysis. J Chromatogr A. 2011;1218(22):3537–44.PubMedGoogle Scholar
  93. 93.
    Zhao L, Zhou J, Xie H, Huang D, Zhou P. Quaternized celluloses as new dynamic coatings in capillary electrophoresis for basic protein separation. Electrophoresis. 2012;33(12):1703–8.PubMedGoogle Scholar
  94. 94.
    Landers JP. Handbook of capillary electrophoresis. Boca Raton: CRC Press; 1996.Google Scholar
  95. 95.
    Boselli L, Polo E, Castagnola V, Dawson KA. Regimes of biomolecular ultrasmall nanoparticle interactions. Angew Chem Int Ed. 2017;56(15):4215–8.Google Scholar
  96. 96.
    Dalzon B, Aude-Garcia C, Collin-Faure V, Diemer H, Béal D, Dussert F, et al. Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles. Nanoscale. 2017;9(27):9641–58.PubMedGoogle Scholar
  97. 97.
    Gao J, Lin L, Wei A, Sepúlveda MS. Protein corona analysis of silver nanoparticles exposed to fish plasma. Environ Sci Technol Lett. 2017;4(5):174–9.Google Scholar
  98. 98.
    Caputo D, Papi M, Coppola R, Palchetti S, Digiacomo L, Caracciolo G, et al. A protein corona-enabled blood test for early cancer detection. Nanoscale. 2017;9(1):349–54.PubMedGoogle Scholar
  99. 99.
    Juling S, Niedzwiecka A. Böhmert L, Lichtenstein D, Selve S, Braeuning A, Thünemann AF, Krause E, Lampen A. Protein corona analysis of silver nanoparticles links to their cellular effects. J Proteome Res. 2017;16(11):4020–34.PubMedGoogle Scholar
  100. 100.
    Raesch SS, Tenzer S, Storck W, Rurainski A, Selzer D, Ruge CA, et al. Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid vomposition. ACS Nano. 2015;9(12):11872–85.PubMedGoogle Scholar
  101. 101.
    Welsher K, McManus SA, Hsia C-H, Yin S, Yang H. Discovery of protein- and DNA-imperceptible nanoparticle hard coating using gel-based reaction tuning. J Am Chem Soc. 2015;137(2):580–3.PubMedGoogle Scholar
  102. 102.
    Johnston BD, Kreyling WG, Pfeiffer C, Schäffler M, Sarioglu H, Ristig S, et al. Colloidal stability and surface chemistry are key factors for the composition of the protein corona of inorganic gold nanoparticles. Adv Funct Mater. 2017;27(42):1701956.Google Scholar
  103. 103.
    Chen F, Wang G, Griffin JI, Brenneman B, Banda NK, Holers VM, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotechnol. 2017;12(4):387–93.PubMedGoogle Scholar
  104. 104.
    Sund J, Palomäki J, Ahonen N, Savolainen K, Alenius H, Puustinen A. Phagocytosis of nano-sized titanium dioxide triggers changes in protein acetylation. J Proteomics. 2014;108(Suppl C):469–83.PubMedGoogle Scholar
  105. 105.
    Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer S, Stauber R. The nanoparticle biomolecule corona: lessons learned–challenge accepted? Chem Soc Rev. 2015;44(17):6094–121.PubMedGoogle Scholar
  106. 106.
    Schmitt-Kopplin P, editor. Capillary electrophoresis. New York: Springer; 2016.Google Scholar
  107. 107.
    Müller MB, Schmitt D, Frimmel FH. Fractionation of natural organic matter by size exclusion chromatography-properties and stability of fractions. Environ Sci Technol. 2000;34(23):4867–72.Google Scholar
  108. 108.
    Berwick L, Greenwood PF, Smernik RJ. The use of MSSV pyrolysis to assist the molecular characterisation of aquatic natural organic matter. Water Res. 2010;44(10):3039–54.PubMedGoogle Scholar
  109. 109.
    Simpson AJ, Kingery WL, Hatcher PG. The identification of plant derived structures in humic materials using three-dimensional NMR spectroscopy. Environ Sci Technol. 2003;37(2):337–42.PubMedGoogle Scholar
  110. 110.
    Riedel T, Dittmar T. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2014;86(16):8376–82.PubMedGoogle Scholar
  111. 111.
    Lundqvist M, Sethson I, Jonsson B-H. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. Langmuir. 2004;20(24):10639–47.PubMedGoogle Scholar
  112. 112.
    Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML. Protein corona significantly reduces active targeting yield. Chem Commun. 2013;49(25):2557–9.Google Scholar
  113. 113.
    Lacerda SHDP, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano. 2009;4(1):365–79.Google Scholar
  114. 114.
    Li L, Mu Q, Zhang B, Yan B. Analytical strategies for detecting nanoparticle–protein interactions. Analyst. 2010;135(7):1519–30.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Simpson DC, Smith RD. Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis. 2005;26(7–8):1291–305.PubMedGoogle Scholar
  116. 116.
    Wojcik R, Li Y, MacCoss MJ, Dovichi NJ. Capillary electrophoresis with Orbitrap-Velos mass spectrometry detection. Talanta. 2012;88:324–9.PubMedGoogle Scholar
  117. 117.
    Grossman PD, Colburn JC, editors. Capillary electrophoresis: Theory and practice. San Diego: Academic; 2012.Google Scholar
  118. 118.
    Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 2011;5(9):7155–67.PubMedGoogle Scholar
  119. 119.
    Fajardo C, Saccà ML, Martinez-Gomariz M, Costa G, Nande M, Martin M. Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere. 2013;93(6):1077–83.PubMedGoogle Scholar
  120. 120.
    Marucco A, Gazzano E, Ghigo D, Enrico E, Fenoglio I. Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2 and carbon nanomaterials. Nanotoxicology. 2016;10(1):1–9.PubMedGoogle Scholar
  121. 121.
    Benetti F, Fedel M, Minati L, Speranza G, Migliaresi C. Gold nanoparticles: role of size and surface chemistry on blood protein adsorption. J Nanopart Res. 2013;15(6):1694.Google Scholar
  122. 122.
    Schäffler M, Semmler-Behnke M, Sarioglu H, Takenaka S, Wenk A, Schleh C, et al. Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology. 2013;24(26):265103.PubMedGoogle Scholar
  123. 123.
    Conde J, Larguinho M, Cordeiro A, Raposo LR, Costa PM, Santos S, et al. Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis. Nanotoxicology. 2014;8(5):521–32.PubMedGoogle Scholar
  124. 124.
    Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol. 2010;100(2):178–86.PubMedGoogle Scholar
  125. 125.
    Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D. Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comp Biochem Phys C. 2010;151(2):167–74.Google Scholar
  126. 126.
    Lai W, Wang Q, Li L, Hu Z, Chen J, Fang Q. Interaction of gold and silver nanoparticles with human plasma: analysis of protein corona reveals specific binding patterns. Colloids Surf B. 2017;152:317–25.Google Scholar
  127. 127.
    Neal AL. What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology. 2008;17(5):362.PubMedGoogle Scholar
  128. 128.
    Poirier M, Simard JC, Antoine F, Girard D. Interaction between silver nanoparticles of 20 nm (AgNP20) and human neutrophils: induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregates. J Appl Toxicol. 2014;3(4):404–12.Google Scholar
  129. 129.
    Ashkarran AA, Ghavami M, Aghaverdi H, Stroeve P, Mahmoudi M. Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Chem Res Toxicol. 2012;25(6):1231–42.PubMedGoogle Scholar
  130. 130.
    Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, et al. Proteomics study of silver nanoparticles toxicity on Bacillus thuringiensis. Ecotoxicol Environ Saf. 2014;100:122–30.PubMedGoogle Scholar
  131. 131.
    Jansch M, Stumpf P, Graf C, Rühl E, Müller R. Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm. 2012;428(1):125–33.PubMedGoogle Scholar
  132. 132.
    Gräfe C, Weidner A, Lühe M, Bergemann C, Schacher FH, Clement JH, et al. Intentional formation of a protein corona on nanoparticles: serum concentration affects protein corona mass, surface charge, and nanoparticle–cell interaction. Int J Biochem Cell B. 2016;75:196–202.Google Scholar
  133. 133.
    Yallapu MM, Chauhan N, Othman SF, Khalilzad-Sharghi V, Ebeling MC, Khan S, et al. Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles. Biomaterials. 2015;46:1–12.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Landgraf L, Christner C, Storck W, Schick I, Krumbein I, Dähring H, et al. A plasma protein corona enhances the biocompatibility of Au@Fe3O4 Janus particles. Biomaterials. 2015;68(Suppl C):77–88.PubMedGoogle Scholar
  135. 135.
    Zarei M, Goharshadi EK, Ahmadzadeh H, Samiee S. Improvement of heat dissipation in agarose gel electrophoresis by metal oxide nanoparticles. RSC Adv. 2015;5(108):88655–65.Google Scholar
  136. 136.
    Zarei M, Ahmadzadeh H, Goharshadi EK. Embedded ceria nanoparticles in gel improve electrophoretic separation: a preliminary demonstration. Analyst. 2015;140:4434–44.PubMedGoogle Scholar
  137. 137.
    Sacchetti C, Motamedchaboki K, Magrini A, Palmieri G, Mattei M, Bernardini S, et al. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano. 2013;7(3):1974–89.PubMedGoogle Scholar
  138. 138.
    Zarei M, Ahmadzadeh H, Goharshadi EK, Farzaneh A. Graphitic carbon nitride embedded hydrogels for enhanced gel electrophoresis. Anal Chim Acta. 2015;887:245–52.PubMedGoogle Scholar
  139. 139.
    Ghavami M, Saffar S, Emamy BA, Peirovi A, Shokrgozar MA, Serpooshan V, et al. Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv. 2013;3(4):1119–26.Google Scholar
  140. 140.
    Canesi L, Ciacci C, Fabbri R, Balbi T, Salis A, Damonte G, et al. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: role of soluble hemolymph proteins. Environ Res. 2016;150:73–81.PubMedGoogle Scholar
  141. 141.
    Schöttler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol. 2016;11(4):372–7.PubMedGoogle Scholar
  142. 142.
    Pillai GJ, Paul-Prasanth B, Nair SV, Menon D. Influence of surface passivation of 2-Methoxyestradiol loaded PLGA nanoparticles on cellular interactions, pharmacokinetics and tumour accumulation. Colloids Surf B. 2017;150(Suppl C):242–9.Google Scholar
  143. 143.
    Giudice MCL, Herda LM, Polo E, Dawson KA. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry. Nat Commun. 2016;7:13475.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Schröder S, Zhang H, Yeung ES, Jänsch L, Zabel C, Wätzig H. Quantitative gel electrophoresis: sources of variation. J Proteome Res. 2008;7(3):1226–34.PubMedGoogle Scholar
  145. 145.
    Ünlü M, Morgan ME, Minden JS. Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis. 1997;18(11):2071–7.PubMedGoogle Scholar
  146. 146.
    Ciborowski P, Silberring J. Proteomic profiling and analytical chemistry: The crossroads. Amsterdam: Elsevier; 2016.Google Scholar
  147. 147.
    Viswanathan S, Ünlü M, Minden JS. Two-dimensional difference gel electrophoresis. Nat Protoc. 2006;1(3):1351.PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical, Polymer & Petrochemical Technology Development Research DivisionResearch Institute of Petroleum IndustryTehranIran

Personalised recommendations