Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 3, pp 559–564 | Cite as

Gold nanoparticles as labels for immunochemical analysis using laser ablation inductively coupled plasma mass spectrometry

  • Michaela Tvrdonova
  • Marcela Vlcnovska
  • Lucie Pompeiano Vanickova
  • Viktor Kanicky
  • Vojtech Adam
  • Lena Ascher
  • Norbert Jakubowski
  • Marketa Vaculovicova
  • Tomas VaculovicEmail author
Communication
Part of the following topical collections:
  1. Elemental and Molecular Imaging by LA-ICP-MS

Abstract

In this paper, we describe the labelling of antibodies by gold nanoparticles (AuNPs) with diameters of 10 and 60 nm with detection by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Additionally, the AuNPs labelling strategy is compared with commercially available labelling reagents based on MeCAT (metal coded affinity tagging). Proof of principle experiments based on dot blot experiments were performed. The two labelling methods investigated were compared by sensitivity and limit of detection (LOD). The absolute LODs achieved were in the range of tens of picograms for AuNP labelling compared to a few hundred picograms by the MeCAT labelling.

Keywords

Dot blot Antibody labelling Gold nanoparticles LA-ICP-MS Immunochemistry 

Notes

Acknowledgments

Financial support was provided by Grant Agency of Czech Republic (GACR 17-12774S) and project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Program II. LPV was supported by project 6SA17676 that received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie and which is co-financed by the South Moravian Region under the grant agreement No. 665860.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Brada D, Roth J. Golden blot - detection of polyclonal and monoclonal-antibodies bound to antigens on nitrocellulose by protein-a gold complexes. Anal Biochem. 1984;142:79–83.CrossRefGoogle Scholar
  2. 2.
    Surek B, Latzko E. Visualization of antigenic proteins blotted onto nitrocellulose using the immuno-gold-staining (IGS) method. Biochem Biophys Res Commun. 1984;121:284–9.CrossRefGoogle Scholar
  3. 3.
    Hsu YH. Immunogold for detection of antigen on nitrocellulose paper. Anal Biochem. 1984;142:221–5.CrossRefGoogle Scholar
  4. 4.
    Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256–82.CrossRefGoogle Scholar
  5. 5.
    Omidfar K, Khorsand F, Azizi MD. New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens Bioelectron. 2013;43:336–47.CrossRefGoogle Scholar
  6. 6.
    Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces dna damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc. 2010;132:1517.CrossRefGoogle Scholar
  7. 7.
    Kneipp J, Kneipp H, Wittig B, Kneipp K. Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C. 2010;114:7421–6.CrossRefGoogle Scholar
  8. 8.
    Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett. 2006;6:2225–31.CrossRefGoogle Scholar
  9. 9.
    Drescher D, Zeise I, Traub H, Guttmann P, Seifert S, Buchner T, et al. In situ characterization of SiO2 nanoparticle biointeractions using BrightSilica. Adv Funct Mater. 2014;24:3765–75.CrossRefGoogle Scholar
  10. 10.
    Wilschut J, Hoekstra D. Membrane-fusion - from liposomes to biological-membranes. Trends BiochemSci. 1984;9:479–83.CrossRefGoogle Scholar
  11. 11.
    Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700.CrossRefGoogle Scholar
  12. 12.
    Kneipp J, Kneipp H, Wittig B, Kneipp K. One- and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett. 2007;7:2819–23.CrossRefGoogle Scholar
  13. 13.
    Ochsenkuhn MA, Jess PRT, Stoquert H, Dholakia K, Campbell CJ. Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development. ACS Nano. 2009;3:3613–21.CrossRefGoogle Scholar
  14. 14.
    Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev. 2010;29:156–75.Google Scholar
  15. 15.
    Buchner T, Drescher D, Merk V, Traub H, Guttmann P, Werner S, et al. Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes. Analyst. 2016;141:5096–106.CrossRefGoogle Scholar
  16. 16.
    Zhang C, Wu FB, Zhang XR. ICP-MS-based competitive immunoassay for the determination of total thyroxin in human serum. J Anal At Spectrom. 2002;17:1304–7.CrossRefGoogle Scholar
  17. 17.
    Giesen C, Waentig L, Panne U, Jakubowski N. History of inductively coupled plasma mass spectrometry-based immunoassays. Spectrochim Acta B. 2012;76:27–39.CrossRefGoogle Scholar
  18. 18.
    Giesen C, Mairinger T, Khoury L, Waentig L, Jakubowski N, Panne U. Multiplexed immunohistochemical detection of tumor markers in breast Cancer tissue using laser ablation inductively coupled plasma mass spectrometry. Anal Chem. 2011;83:8177–83.CrossRefGoogle Scholar
  19. 19.
    Waentig L, Jakubowski N, Hardt S, Scheler C, Roos PH, Linscheid MW. Comparison of different chelates for lanthanide labeling of antibodies and application in a Western blot immunoassay combined with detection by laser ablation (LA-)ICP-MS. J Anal At Spectrom. 2012;27:1311–20.CrossRefGoogle Scholar
  20. 20.
    Muller SD, Diaz-Bobe RA, Felix J, Goedecke W. Detection of specific proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using gold cluster labelled antibodies. J Anal At Spectrom. 2005;20:907–11.CrossRefGoogle Scholar
  21. 21.
    M. Cruz-Alonso, B. Fernandez, L. Alvarez, H. Gonzalez-Iglesias, H. Traub, N. Jakubowski, R. Pereiro, Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags, Microchim. Acta, 185 (2018).Google Scholar
  22. 22.
    Waentig L, Techritz S, Jakubowski N, Roos PH. A multi-parametric microarray for protein profiling: simultaneous analysis of 8 different cytochromes via differentially element tagged antibodies and laser ablation ICP-MS. Analyst. 2013;138:6309–15.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Michaela Tvrdonova
    • 1
    • 2
  • Marcela Vlcnovska
    • 3
  • Lucie Pompeiano Vanickova
    • 3
    • 4
  • Viktor Kanicky
    • 1
    • 2
  • Vojtech Adam
    • 3
    • 4
  • Lena Ascher
    • 5
  • Norbert Jakubowski
    • 5
  • Marketa Vaculovicova
    • 3
    • 4
  • Tomas Vaculovic
    • 1
    • 4
    Email author
  1. 1.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.CEITECMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
  4. 4.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  5. 5.Bundesanstalt für Materialforschung und -prüfung (BAM)BerlinGermany

Personalised recommendations