Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 26, pp 6733–6749 | Cite as

Longitudinal investigation of the metabolome of 3D aggregating brain cell cultures at different maturation stages by 1H HR-MAS NMR

  • Gaëlle Diserens
  • Martina Vermathen
  • Marie-Gabrielle Zurich
  • Peter Vermathen
Paper in Forefront

Abstract

The aim of the present study was to establish the developmental profile of metabolic changes of 3D aggregating brain cell cultures by 1H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. The histotypic 3D brain aggregate, containing all brain cell types, is an excellent model for mechanistic studies including OMICS analysis; however, their metabolic profile has not been yet fully investigated. Chemometric analysis revealed a clear separation of samples from the different maturation time points. Metabolite concentration evolutions could be followed and revealed strong and various metabolic alterations. The strong metabolite evolution emphasizes the brain modeling complexity during maturation, possibly reflecting physiological processes of brain tissue development. The small observed intra- and inter-experimental variabilities show the robustness of the combination of 1H-HR-MAS NMR and 3D brain aggregates, making it useful to investigate mechanisms of toxicity that will ultimately contribute to improve predictive neurotoxicology.

Graphical Abstract

Keywords

High-resolution magic angle spinning Nuclear magnetic resonance 3D brain cell cultures Brain aggregates Chemometrics 

Notes

Acknowledgements

This work was supported by the UniBE ID-Grant (PV), Swiss National Science Foundation SNF grant no. 200021_14438 (MV), and Swiss Centre for Applied Human Toxicology (SCAHT) grant (MGZ).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was obtained from the VD Service de la consommation et des affaires vétérinaires (authorization number VD3128). Animals were housed and handled following the guidelines of the Ethics Committee for Animal Experimentation of the Swiss Academy of Medical Sciences (SAMS) and the Swiss Academy of Sciences (SCNAT).

Supplementary material

216_2018_1295_MOESM1_ESM.pdf (491 kb)
ESM 1 (PDF 491 kb)

References

  1. 1.
    Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–78.CrossRefPubMedGoogle Scholar
  2. 2.
    Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Man F, Anna T, Kathy M, Wu JH, Ken H, Edmundo M. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets—1960 to 1999. Drug Inf J. 2001;35(1):293–317.CrossRefGoogle Scholar
  4. 4.
    Coecke S, Eskes C, Gartlon J, Kinsner A, Price A, van Vliet E, et al. The value of alternative testing for neurotoxicity in the context of regulatory needs. Environ Toxicol Pharmacol. 2006;21(2):153–67.CrossRefPubMedGoogle Scholar
  5. 5.
    Bal-Price AK, Hogberg HT, Buzanska L, Coecke S. Relevance of in vitro neurotoxicity testing for regulatory requirements: challenges to be considered. Neurotoxicol Teratol. 2010;32(1):36–41.CrossRefPubMedGoogle Scholar
  6. 6.
    OECD. Test no. 424: neurotoxicity study in rodents, OECD guidelines for the testing of chemicals, section 4, no. 424, OECD Publishing, Paris. 1997.  https://doi.org/10.1787/9789264071025-en. Accessed 27 April 2018.
  7. 7.
    OECD. Test no. 426: developmental neurotoxicity study, OECD guidelines for the testing of chemicals, section 4, no. 426, OECD Publishing, Paris. 2007.  https://doi.org/10.1787/9789264067394-en. Accessed 27 April 2018.
  8. 8.
    Crofton KM, Mundy WR, Lein PJ, Bal-Price A, Coecke S, Seiler AE, et al. Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX. 2011;28(1):9–15.PubMedGoogle Scholar
  9. 9.
    Honegger P, Defaux A, Monnet-Tschudi F, Zurich MG. Preparation, maintenance, and use of serum-free aggregating brain cell cultures. Methods Mol Biol. 2011;758:81–97.CrossRefPubMedGoogle Scholar
  10. 10.
    Schultz L, Zurich MG, Culot M, da CA LC, Bellwon P, et al. Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. Toxicol In Vitro. 2015;30(1 Pt A):138–65.CrossRefPubMedGoogle Scholar
  11. 11.
    Prieto P, Kinsner-Ovaskainen A, Stanzel S, Albella B, Artursson P, Campillo N, et al. The value of selected in vitro and in silico methods to predict acute oral toxicity in a regulatory context: results from the European Project ACuteTox. Toxicol in Vitro. 2013;27(4):1357–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Zurich MG, Stanzel S, Kopp-Schneider A, Prieto P, Honegger P. Evaluation of aggregating brain cell cultures for the detection of acute organ-specific toxicity. Toxicol in Vitro. 2013;27(4):1416–24.CrossRefPubMedGoogle Scholar
  13. 13.
    Zurich MG, Eskes C, Honegger P, Berode M, Monnet-Tschudi F. Maturation-dependent neurotoxicity of lead acetate in vitro: implication of glial reactions. J Neurosci Res. 2002;70(1):108–16.CrossRefPubMedGoogle Scholar
  14. 14.
    Smirnova L, Hartung T. Chapter 14—human 3D in vitro models for developmental neurotoxicity. In: Paule MG, Wang C, editors. Handbook of developmental neurotoxicology (Second Edition). Academic Press; 2018. p. 163–72.Google Scholar
  15. 15.
    Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Hüppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2002;48:949–58.CrossRefPubMedGoogle Scholar
  16. 16.
    Ramu J, Konak T, Liachenko S. Magnetic resonance spectroscopic analysis of neurometabolite changes in the developing rat brain at 7T. Brain Res. 2016;1651:114–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Kato T, Nishina M, Matsushita K, Hori E, Mito T, Takashima S. Neuronal maturation and N-acetyl-L-aspartic acid development in human fetal and child brains. Brain Dev. 1997;19(2):131–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Xu D, Bonifacio SL, Charlton NN, Vaughan P, Lu Y, Ferriero DM, et al. MR spectroscopy of normative premature newborns. J Magn Reson Imaging. 2011;33(2):306–11.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Card D, Nossin-Manor R, Moore AM, Raybaud C, Sled JG, Taylor MJ. Brain metabolite concentrations are associated with illness severity scores and white matter abnormalities in very preterm infants. Pediatr Res. 2013;74(1):75–81.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tanifuji S, Akasaka M, Kamei A, Araya N, Asami M, Matsumoto A, et al. Temporal brain metabolite changes in preterm infants with normal development. Brain Dev. 2017;39(3):196–202.CrossRefPubMedGoogle Scholar
  21. 21.
    Tkac I, Rao R, Georgieff MK, Gruetter R. Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn Reson Med. 2003;50(1):24–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Clarke CJ, Haselden JN. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol Pathol. 2008;36(1):140–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Leenders J, Frederich M, de Tullio P. Nuclear magnetic resonance: a key metabolomics platform in the drug discovery process. Drug Discov Today Technol. 2015;13:39–46.CrossRefPubMedGoogle Scholar
  24. 24.
    Power WP. High-resolution magic angle spinning-enabling applications of NMR spectroscopy to semi-solid phases. Annu Rep NMR Spectrosc. 2011;72:111–56.CrossRefGoogle Scholar
  25. 25.
    Vermathen M, Paul LEH, Diserens G, Vermathen P, Furrer J. 1H HR-MAS NMR based metabolic profiling of cells in response to treatment with a hexacationic ruthenium metallaprism as potential anticancer drug. PLoS One. 2015;10(5):e0128478.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4(7):551–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Moestue S, Sitter B, Bathen TF, Tessem MB, Gribbestad IS. HR MAS MR spectroscopy in metabolic characterization of cancer. Curr Top Med Chem. 2011;11(1):2–26.CrossRefPubMedGoogle Scholar
  28. 28.
    Smith SJ, Wilson M, Ward JH, Rahman CV, Peet AC, Macarthur DC, et al. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition. PLoS One. 2012;7(12):e52335.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Keshari KR, Sriram R, Van CM, Wilson DM, Wang ZJ, Vigneron DB, et al. Metabolic reprogramming and validation of hyperpolarized 13C lactate as a prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate. 2013;73(11):1171–81.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bollard ME, Xu J, Purcell W, Griffin JL, Quirk C, Holmes E, et al. Metabolic profiling of the effects of D-galactosamine in liver spheroids using (1)H NMR and MAS-NMR spectroscopy. Chem Res Toxicol. 2002;15(11):1351–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Rosi A, Grande S, Luciani AM, Barone P, Mlynarik V, Viti V, et al. (1H) MRS studies of signals from mobile lipids and from lipid metabolites: comparison of the behavior in cultured tumor cells and in spheroids. NMR Biomed. 2004;17(2):76–91.CrossRefPubMedGoogle Scholar
  32. 32.
    Sriram R, Van CM, Hansen A, Wang ZJ, Vigneron DB, Wilson DM, et al. Real-time measurement of hyperpolarized lactate production and efflux as a biomarker of tumor aggressiveness in an MR compatible 3D cell culture bioreactor. NMR Biomed. 2015;28(9):1141–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Esteve V, Berganzo J, Monge R, Martinez-Bisbal MC, Villa R, Celda B, et al. Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring. Biomicrofluidics. 2014 Nov;8(6):064105.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Duarte IF, Lamego I, Rocha C, Gil AM. NMR metabonomics for mammalian cell metabolism studies. Bioanalysis. 2009;1(9):1597–614.CrossRefPubMedGoogle Scholar
  35. 35.
    Santos SS, Leite SB, Sonnewald U, Carrondo MJT, Alves PM. Stirred vessel cultures of rat brain cells aggregates: characterization of major metabolic pathways and cell population dynamics. J Neurosci Res. 2007;85(15):3386–97.CrossRefPubMedGoogle Scholar
  36. 36.
    Feng Y, Zhu H, Zhang X, Wang X, Xu F, Tang H, et al. NMR based cerebrum metabonomic analysis reveals simultaneous interconnected changes during chick embryo incubation. PLoS One. 2015;10(10):e0139948.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zurich MG, Monnet-Tschudi F, Costa LG, Schilter BT, Honegger P. Aggregating brain cell cultures for neurotoxicological studies. In vitro neurotoxicology. Springer; 2004. p. 243-66.Google Scholar
  38. 38.
    Aguilar JA, Nilsson M, Bodenhausen G, Morris GA. Spin echo NMR spectra without J modulation. Chem Commun. 2012;48(6):811–3.CrossRefGoogle Scholar
  39. 39.
    Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006;78(13):4281–90.CrossRefPubMedGoogle Scholar
  40. 40.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7.PubMedGoogle Scholar
  41. 41.
    Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13:129–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Duarte JM, Lei H, Mlynarik V, Gruetter R. The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage. 2012 Jun;61(2):342–62.CrossRefPubMedGoogle Scholar
  43. 43.
    Vermathen P, Capizzano AA, Maudsley AA. Administration and H-1 MRS detection of histidine in human brain: application to in vivo pH measurement. Magn Reson Med. 2000;43(5):665–75.CrossRefPubMedGoogle Scholar
  44. 44.
    De Graaf RA, Chowdhury GM, Behar KL. Quantification of high-resolution (1)H NMR spectra from rat brain extracts. Anal Chem. 2011;83(1):216–24.CrossRefPubMedGoogle Scholar
  45. 45.
    Yang Y, Chen L, Gao H, Zeng D, Yue Y, Liu M, et al. High-resolution magic-angle spinning (13)C spectroscopy of brain tissue at natural abundance. Magn Reson Chem. 2006 Mar;44(3):263–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Schurr PE, Thompson HT, Henderson LM, Williams JN Jr, Elvehjem CA. The determination of free amino acids in rat tissues. J Biol Chem. 1950;182:39–45.Google Scholar
  47. 47.
    Brand A, Leibfritz D, Hamprecht B, Dringen R. Metabolism of cysteine in astroglial cells: synthesis of hypotaurine and taurine. J Neurochem. 1998;71(2):827–32.CrossRefPubMedGoogle Scholar
  48. 48.
    Sturman JA. Taurine in development. Physiol Rev. 1993;73(1):119–47.CrossRefPubMedGoogle Scholar
  49. 49.
    Nakada T. Conversion of brain cytosol profile from fetal to adult type during the perinatal period: taurine-NAA exchange. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(6):630–42.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sandstrom J, Broyer A, Zoia D, Schilt C, Greggio C, Fournier M, et al. Potential mechanisms of development-dependent adverse effects of the herbicide paraquat in 3D rat brain cell cultures. Neurotoxicology. 2017;60:116–24.CrossRefPubMedGoogle Scholar
  51. 51.
    Beyer BA, Fang M, Sadrian B, Montenegro-Burke JR, Plaisted WC, Kok BPC, et al. Metabolomics-based discovery of a metabolite that enhances oligodendrocyte maturation. Nat Chem Biol. 2018;14(1):22–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Precht C, Diserens G, Oevermann A, Vermathen M, Lang J, Boesch C, et al. Visibility of lipid resonances in HR-MAS spectra of brain biopsies subject to spinning rate variation. Biochim Biophys Acta. 2015;1851(12):1539–44.CrossRefPubMedGoogle Scholar
  53. 53.
    Huster D, Arnold K, Gawrisch K. Investigation of lipid organization in biological membranes by two-dimensional nuclear overhauser enhancement spectroscopy. J Phys Chem B. 1999;103(1):243–51.CrossRefGoogle Scholar
  54. 54.
    Scheidt HA, Huster D. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning. Acta Pharmacol Sin. 2008;29(1):35–49.CrossRefPubMedGoogle Scholar
  55. 55.
    Scheidt HA, Pampel A, Nissler L, Gebhardt R, Huster D. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochim Biophys Acta. 2004;1663(1–2):97–107.CrossRefPubMedGoogle Scholar
  56. 56.
    Green P, Yavin E. Elongation, desaturation, and esterification of essential fatty acids by fetal rat brain in vivo. J Lipid Res. 1993;34(12):2099–107.PubMedGoogle Scholar
  57. 57.
    Van Aerde JE, Wilke MS, Feldman M, Clandinin MT. Accretion of lipid in the fetus and newborn. In: Polin RA, Fox WW, Abman SH, editors. Fetal and neonatal physiology. Third ed. Philadelphia: Elsevier, Saunders; 2004. p. 388–404.CrossRefGoogle Scholar
  58. 58.
    Bourre JM, Honegger P, Daudu O, Matthieu JM. The lipid composition of rat brain aggregating cell cultures during development. Neurosci Lett. 1979;11(3):275–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of BioMedical Research and RadiologyUniversity of BernBernSwitzerland
  2. 2.Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland
  3. 3.Department of PhysiologyUniversity of LausanneLausanneSwitzerland
  4. 4.Swiss Center for Applied Human Toxicology (SCAHT)BaselSwitzerland

Personalised recommendations