Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 9, pp 1791–1806 | Cite as

Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects

  • Susana CampuzanoEmail author
  • Paloma Yáñez-Sedeño
  • José M. PingarrónEmail author
Review
Part of the following topical collections:
  1. Nanoparticles for Bioanalysis

Abstract

Electrochemical nucleic-acid-based biosensing strategies involving the use of nanoparticles as electrode modifiers and as advanced labels are attractive options for the determination of substances that are relevant clinically, from an environmental perspective, and to food analysis, as these strategies are able to overcome some of the well-known limitations of conventional methodologies for routine applications. In this article, we provide a selective overview of current strategies for nucleic acid electrochemical biosensing based on nanoparticles, in order to demonstrate the relevance and potential of these strategies to readers familiar with this field and to non-experts. The benefits provided by the use of nanoparticles, including enhanced analytical performance of the resulting electrochemical biosensors, as well as the main challenges to be solved and potential future advances in this field are discussed.

Keywords

Nucleic acids Nanoparticles Electrochemical sensors 

Notes

Acknowledgements

The financial support of the CTQ2015-70023-R and CTQ2015-64402-C2-1-R (Spanish Ministerio de Economía y Competitividad Research Projects) and S2013/MT3029 (NANOAVANSENS Program from the Comunidad de Madrid) are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No humans are involved in this study.

References

  1. 1.
    Aufartova J, Sanchez-Paniagua Lopez M, Martin-Fernandez B, Lopez-Ruiz B. Key factors of ternary monolayers to improve DNA sensors performance. Electroanalysis. 2017;29:131–9.CrossRefGoogle Scholar
  2. 2.
    Du X, Zhou J, Li XM, Xu B. Self-assembly of nucleopeptides to interact with DNAs. Interf Focus. 2017;7.  https://doi.org/10.1098/rsfs.2016.0116.
  3. 3.
    Paleček E, Bartosik M. Electrochemistry of nucleic acids. Chem Rev. 2012;112:3427–81.CrossRefGoogle Scholar
  4. 4.
    Yang L, Li X, Yan S, Wang M, Liu P, Dong Y, et al. Single-walled carbon nanotubes-carboxyl-functionalized graphene oxide-based electrochemical DNA biosensor for thermolabile hemolysin gene detection. Anal Methods. 2015;7:5303–10.CrossRefGoogle Scholar
  5. 5.
    Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical genosensing of circulating biomarkers. Sensors. 2017;17:866.  https://doi.org/10.3390/s17040866.CrossRefGoogle Scholar
  6. 6.
    González-Álvarez J, Perez-Ruiz M, Miranda-Castro R, del los Santos Alvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. Effect of tags and labels on the performance of enzyme-amplified electrochemical genomagnetic assays. Electroanalysis. 2013;5:147–53.CrossRefGoogle Scholar
  7. 7.
    Campuzano S, Wang J. Nanobioelectroanalysis based on carbon/inorganic hybrid nanoarchitectures. Electroanalysis. 2011;23:1289–300.CrossRefGoogle Scholar
  8. 8.
    Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev. 2013;42:5425–38.CrossRefGoogle Scholar
  9. 9.
    Hayat A, Catanante G, Marty JL. Current trends in nanomaterial-based amperometric biosensors. Sensors. 2014;14:23439–61.CrossRefGoogle Scholar
  10. 10.
    Wu L, Xiong EH, Zhang X, Zhang XH, Chen JH. Nanomaterials as signal amplification elements in DNA-based electrochemical sensing. Nano Today. 2014;9:197–211.CrossRefGoogle Scholar
  11. 11.
    Castañeda MT, Alegret S, Merkoči A. Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis. 2007;19:743–53.CrossRefGoogle Scholar
  12. 12.
    Soleymani L, Fang Z, Sun X, Yang H, Taft BJ, Sargent EH, et al. Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection. Angew Chem Int Ed. 2009;48:8457–60.CrossRefGoogle Scholar
  13. 13.
    Bin X, Sargent EH, Kelley SO. Nanostructuring of sensors determines the efficiency of biomolecular capture. Anal Chem. 2010;82:5928–31.CrossRefGoogle Scholar
  14. 14.
    Soreta TR, Henry OYF, O’Sullivan CK. Electrode surface nanostructuring via nanoparticle electronucleation for signal enhancement in electrochemical genosensors. Biosens Bioelectron. 2011;26:3962–6.CrossRefGoogle Scholar
  15. 15.
    Merkoçi A, Aldavert M, Marín S, Alegret S. New materials for electrochemical sensing V: nanoparticles for DNA labelling. Trends Anal Chem. 2005;24:341–9.CrossRefGoogle Scholar
  16. 16.
    Castañeda MT, Merkoçi A, Pumera M, Alegret S. Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosens Bioelectron. 2006;22:1961–7.CrossRefGoogle Scholar
  17. 17.
    Iglesias-Mayor A, Costa-García A. Nanomaterials as electrochemical labels for biosensors. Curr Trends Biomedical Eng Biosci. 2017;5.  https://doi.org/10.19080/CTBEB.2017.05.555664.
  18. 18.
    Martín-Yerga D, González-García MB, Costa-García A. Biosensor array based on the in situ detection of quantum dots as electrochemical label. Sensors Actuators B Chem. 2013;182:184–9.CrossRefGoogle Scholar
  19. 19.
    dos Santos DS, Alvarez-Puebla RA Jr, Oliveira ON, Aroca RF Jr. Controlling the size and shape of gold nanoparticlesin fulvic acid colloidal solutions and their optical characterization using SERS. J Mater Chem. 2005;15:3045–9.CrossRefGoogle Scholar
  20. 20.
    Miscoria SA, Barrera GD, Rivas GA. Enzymatic biosensor based on carbon paste electrodes modified with gold nanoparticles and polyphenol oxidase. Electroanalysis. 2005;17:1578–82.CrossRefGoogle Scholar
  21. 21.
    Liu P, Wang D, Zhou Y, Wang H, Yin H, Ai S. DNA methyltransferase detection based on digestion triggering the combination of polyadenine DNA with gold nanoparticles. Biosens Bioelectron. 2016;80:74–8.CrossRefGoogle Scholar
  22. 22.
    Pingarrón JM, Yañez-Sedeño P, González-Cortés A. Gold nanoparticle-based electrochemical biosensors. Electrochim Acta. 2008;53:5848–66.CrossRefGoogle Scholar
  23. 23.
    Cai H, Xu C, He P, Fang Y. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem. 2001;510:78–85.Google Scholar
  24. 24.
    Kang J, Li X, Wu G, Wang Z, Lu X. A new scheme of hybridization based on the Aunano-DNA modified glassy carbon electrode. Anal Biochem. 2007;364:165–70.CrossRefGoogle Scholar
  25. 25.
    Li D, Yan Y, Wieckowska A, Willner I. Amplified electrochemical detection of DNA through the aggregation of Au nanoparticles on electrodes and the incorporation of methylene blue into the DNA-crosslinked structure. Chem Commun. 2007;34:3544–6.Google Scholar
  26. 26.
    Ensafi AA, Taei M, Rahmani HR, Khayamian T. Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode. Electrochim Acta. 2011;56:8176–83.CrossRefGoogle Scholar
  27. 27.
    Aydinlik S, Ozkan-Ariksoysal D, Kara P, Arzu Sayiner A, Ozsoz M. A nucleic acid-based electrochemical biosensor for the detection of influenza B virus from PCR samples using gold nanoparticle-adsorbed disposable graphite electrode and Meldola’s blue as an intercalator. Anal Methods. 2011;3:1607–14.CrossRefGoogle Scholar
  28. 28.
    Das R, Sharma Mukesh K, Rao VK, Bhattacharya BK, Garga I, Venkatesh V, et al. An electrochemical genosensor for Salmonella typhi on gold nanoparticles-mercaptosilane modified screen printed electrode. J Biotechnol. 2014;188:9–16.CrossRefGoogle Scholar
  29. 29.
    Benvidi A, Dehghani Firouzabadi A, Mohammad Moshtaghiun S, Mazloum-Ardakani M, Tezerjani MD. Ultrasensitive DNA sensor based on gold nanoparticles/reduced graphene oxide/glassy carbon electrode. Anal Biochem. 2015;484:24–30.CrossRefGoogle Scholar
  30. 30.
    Liu TZ, Hu R, Zhang X, Zhang KL, Liu Y, Zhang XB, et al. Metal–organic frameworks nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal Chem. 2016;88:12516–23.CrossRefGoogle Scholar
  31. 31.
    Hong L, Wan J, Zhang XJ, Wang GE. DNA-gold nanoparticles network based electrochemical biosensors for DNA MTase activity. Talanta. 2016;152:228–35.CrossRefGoogle Scholar
  32. 32.
    Azimzadeh M, Rahaiea M, Nasirizadeh N, Ashtari K, Naderi-Manesh H. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron. 2016;77:99–106.CrossRefGoogle Scholar
  33. 33.
    Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA. 2004;101:14036–9.Google Scholar
  34. 34.
    Li Y, Tian R, Zheng X, Huang R. Amplified electrochemical detection of nucleic acid hybridization via selective pre-concentration of unmodified gold nanoparticles. Anal Chim Acta. 2016;934:59–65.CrossRefGoogle Scholar
  35. 35.
    Lu Z, Tang H, Wu D, Xia Y, Wu M, Yi X, et al. Amplified voltammetric detection of miRNA from serum samples of glioma patients via combination of conducting magnetic microbeads and ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosens Bioelectron. 2016;86:502–7.CrossRefGoogle Scholar
  36. 36.
    Labib M, Khan N, Ghobadloo SM, Cheng J, Pezacki JP, Berezovski MV. Three-mode electrochemical sensing of ultralow microRNA levels. J Am Chem Soc. 2013;135:3027–38.CrossRefGoogle Scholar
  37. 37.
    Zouari M, Campuzano S, Pingarrón JM, Raouafi N. Ultrasensitive determination of microribonucleic acids in cancer cells with nanostructured-disposable electrodes using the viral protein p19 for recognition of ribonucleic acid/microribonucleic acid homoduplexes. Electrochim Acta. 2018;262:39–47.CrossRefGoogle Scholar
  38. 38.
    Zouari M, Campuzano S, Pingarrón JM, Raouafi N. Competitive RNA-RNA hybridization-based integrated nanostructured disposable electrode for highly sensitive determination of miRNAs in cancer cells. Biosens Bioelectron. 2017;91:40–5.CrossRefGoogle Scholar
  39. 39.
    Wang W-J, Li J-J, Rui K, Gai P-P, Zhang J-R, Zhu J-J. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Anal Chem. 2015;87:3019–26.CrossRefGoogle Scholar
  40. 40.
    Xie D, Li C, Li S, Qi HL, Xue D, Gao Q, et al. Click chemistry-assisted self-assembly of DNA aptamer on gold nanoparticles-modified screen-printed carbon electrodes for label-free electrochemical aptasensor. Sensors Actuators B Chem. 2014;192:558–64.CrossRefGoogle Scholar
  41. 41.
    Jolly P, Zhurauski P, Hammond JL, Miodek A, Liébana S, Bertok T, et al. Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker. Sensors Actuators B Chem. 2017;251:637–43.CrossRefGoogle Scholar
  42. 42.
    Authier L, Grossiord C, Brossier P, Limoges B. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem. 2001;73:4450–6.CrossRefGoogle Scholar
  43. 43.
    Wang J, Polsky R, Xu D. Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir. 2001;17:5739–41.CrossRefGoogle Scholar
  44. 44.
    Kawde A-N, Wang J. Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis. 2004;16:101–7.CrossRefGoogle Scholar
  45. 45.
    Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem. 2003;75:2181–7.CrossRefGoogle Scholar
  46. 46.
    Pumera M, Castañeda MT, Pividori MI, Eritja R, Merkoçi A, Alegret S. Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer. Langmuir. 2005;21:9625–9.CrossRefGoogle Scholar
  47. 47.
    Li S, Qiu W, Zhang X, Ni J, Gao F, Wang Q. A high-performance DNA biosensor based on the assembly of gold nanoparticles on the terminal of hairpin-structured probe DNA. Sensors Actuators B Chem. 2016;223:861–7.CrossRefGoogle Scholar
  48. 48.
    Dequaire MR, Limoges B, Brossiera P. Subfemtomolar electrochemical detection of target DNA by catalytic enlargement of the hybridized gold nanoparticle labels. Analyst. 2006;131:923–9.CrossRefGoogle Scholar
  49. 49.
    Wang J, Xu D, Polsky R. Magnetically-induced solid-state electrochemical detection of DNA hybridization. J Am Chem Soc. 2002;124:4208–9.CrossRefGoogle Scholar
  50. 50.
    Cai H, Wang Y, He P, Fang Y. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal Chim Acta. 2002;469:165–72.CrossRefGoogle Scholar
  51. 51.
    Cai H, Shang C, Ming H. Sequence-specific electrochemical recognition of multiple species using nanoparticle labels. Anal Chim Acta. 2004;523:61–8.CrossRefGoogle Scholar
  52. 52.
    Lee TMH, Li LL, Hsing IL. Enhanced electrochemical detection of DNA hybridization based on electrode-surface modification. Langmuir. 2003;19:4338–43.CrossRefGoogle Scholar
  53. 53.
    Lee TMH, Cai H, Hsing IM. Gold nanoparticle catalyzed silver electrodeposition on an indium tin oxide electrode and its application in DNA hybridization transduction. Electroanalysis. 2004;16:1628–31.CrossRefGoogle Scholar
  54. 54.
    Zhu Y, Chandra P, Shim YB. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine−Au nanoparticle−aptamer bioconjugate. Anal Chem. 2013;85:1058–64.Google Scholar
  55. 55.
    Ocaña C, del Valle M. Signal amplification for thrombin impedimetric aptasensor: sandwich protocol and use of gold-streptavidin nanoparticles. Biosens Bioelectron. 2014;54:408–14.CrossRefGoogle Scholar
  56. 56.
    Wang J, Li J, Baca AJ, Hu J, Zhou F, Yan W, et al. Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem. 2003;75:3941–5.CrossRefGoogle Scholar
  57. 57.
    Baca AJ, Zhou F, Wang J, Hu J, Li J, Wang J, et al. Attachment of ferrocene-capped gold nanoparticle/streptavidin conjugates onto electrode surfaces covered with biotinylated biomolecules for enhanced voltammetric analysis. Electroanalysis. 2004;16:73–80.CrossRefGoogle Scholar
  58. 58.
    Zong Y, Liu F, Zhang Y, Zhan T, He Y, Hun X. Signal amplification technology based on entropy-driven molecularswitch for ultrasensitive electrochemical determination of DNA and Salmonella typhimurium. Sensors Actuators B Chem. 2016;225:420–7.Google Scholar
  59. 59.
    Ilkhani H, Sarparast M, Noori A, Bathaie SZ, Mousavi MF. Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe. Biosens Bioelectron. 2015;74:491–7.CrossRefGoogle Scholar
  60. 60.
    Wang J, Liu G, Rivas G. Encoded beads for electrochemical identification. Anal Chem. 2003;75:4667–71.CrossRefGoogle Scholar
  61. 61.
    Wang J, Liu G, Merkoçi A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc. 2003;125:3214–5.CrossRefGoogle Scholar
  62. 62.
    Patel MK, Singh J, Singh MK, Agrawal VV, Ansari SG, Malhotra BD. Tin oxide quantum dot based DNA sensor for pathogen detection. J Nanosci Nanotechnol. 2013;13:1671–8.CrossRefGoogle Scholar
  63. 63.
    Zhang C, Xu S, Zhang X, Huang D, Li R, Zhao S, et al. Electrochemical detection of specific DNA sequences related to bladder cancer on CdTe quantum dots modified glassy carbon electrode. J Electroanal Chem. 2014;735:115–22.CrossRefGoogle Scholar
  64. 64.
    Martín-Yerga D, González-García MB, Costa-García A. Electrochemical immunosensor for anti-tissue transglutaminase antibodies based on the in situ detection of quantum dots. Talanta. 2014;130:598–602.CrossRefGoogle Scholar
  65. 65.
    Martín-Yerga D, Costa-García A. Electrochemical detection of quantum dots by stabilization of electrogenerated copper species. Electrochem Commun. 2017;74:53–6.CrossRefGoogle Scholar
  66. 66.
    Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, et al. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem. 2008;80:707–12.CrossRefGoogle Scholar
  67. 67.
    Xiang Y, Zhang H, Jiang B, Chai Y, Yuan R. Quantum dot layer-by-layer assemblies as signal amplification labels for ultrasensitive electronic detection of uropathogens. Anal Chem. 2011;83:4302–6.CrossRefGoogle Scholar
  68. 68.
    Wang D, Hu L, Zhou H, Abdel-Halim E-S, Zhu J-J. Molecular beacon structure mediated rolling circle amplification for ultrasensitive electrochemical detection of microRNA based on quantum dots tagging. Electrochem Commun. 2013;33:80–3.CrossRefGoogle Scholar
  69. 69.
    Zhang C, Lou J, Tu W, Bao J, Dai Z. Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease. Analyst. 2015;140:506–11.CrossRefGoogle Scholar
  70. 70.
    Lu L, Li J, Kang T, Cheng S. Bi-functionalized aptasensor for ultrasensitive detection of thrombin. Talanta. 2015;138:273–8.CrossRefGoogle Scholar
  71. 71.
    Liao F, Wan L, Wei G, Peng H, Fan H. A new electrochemical DNA sensor for sequence-specific DNA detection based on DNA-functionalized CdS nanoparticle. MATEC Web Conf. 2016;67:01002.  https://doi.org/10.1051/matecconf/20166701002.
  72. 72.
    García-Mendiola T, Bravo I, López-Moreno JM, Pariente F, Wannemacher R, Weberd K, et al. Carbon nanodots based biosensors for gene mutation detection. Sensors Actuators B Chem. 2018;256:226–33.CrossRefGoogle Scholar
  73. 73.
    Xiang Q, Huang J, Huang H, Mao W, Ye Z. A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Adv. 2018;8:1820–5.CrossRefGoogle Scholar
  74. 74.
    Peng X, Hu T, Bao T, Zhao L, Zeng X, Wen W, et al. A label-free electrochemical biosensor for methyltransferase activity detection and inhibitor screening based on graphene quantum dot and enzyme-catalyzed reaction. J Electroanal Chem. 2017;799:327–32.CrossRefGoogle Scholar
  75. 75.
    Hu T, Zhang L, Wen W, Zhang X, Wang S. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosens Bioelectron. 2016;77:451–6.CrossRefGoogle Scholar
  76. 76.
    Fernandez RE, Umasankar Y, Manickam P, Nickel JC, Iwasaki LR, Kawamoto BK, et al. Disposable aptamer-sensor aided by magnetic nanoparticle enrichment for detection of salivary cortisol variations in obstructive sleep apnea patients. Sci Rep. 2017;7:17992.  https://doi.org/10.1038/s41598-017-17835-8.CrossRefGoogle Scholar
  77. 77.
    Serafín V, Torrente-Rodríguez RM, Batlle M, García de Frutos P, Campuzano S, Yáñez-Sedeño P, et al. Comparative evaluation of the performance of electrochemical immunosensors using magnetic microparticles and nanoparticles. Application to the determination of tyrosine kinase receptor AXL. Microchim Acta. 2017;184:4251–8.CrossRefGoogle Scholar
  78. 78.
    Altay C, Senay H, Eksin E, Congur G, Erdem A, Akgol S. Development of amino functionalized carbon coated magnetic nanoparticles and their application to electrochemical detection of hybridization of nucleic acids. Talanta. 2017;164:175–82.CrossRefGoogle Scholar
  79. 79.
    Benvidi A, Jahanbani S. Self-assembled monolayer of SH-DNA strand on a magnetic bar carbon paste electrode modified with Fe3O4@Ag nanoparticles for detection of breast cancer mutation. J Electroanal Chem. 2016;768:47–54.Google Scholar
  80. 80.
    Chen M, Hou C, Huo D, Fa H, Zhao Y, Shen C. A sensitive electrochemical DNA biosensor based on three-dimensional nitrogen-doped graphene and Fe3O4 nanoparticles. Sensors Actuators B Chem. 2017;239:421–9.CrossRefGoogle Scholar
  81. 81.
    Cui L, Wu J, Li J, Ju H. Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal−organic framework. Anal Chem. 2015;87:10635–41.CrossRefGoogle Scholar
  82. 82.
    Liu L, Zhou Y, Liu S, Xu M. The applications of metal organic frameworks in electrochemical sensors. ChemElectroChem. 2018;5:6–19.CrossRefGoogle Scholar
  83. 83.
    Ling PH, Lei JP, Zhang L, Ju HX. Porphyrin-encapsulated metal–organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal Chem. 2015;87:3957–63.CrossRefGoogle Scholar
  84. 84.
    Ling P, Lei J, Ju H. Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch. Biosens Bioelectron. 2015;71:373–9.CrossRefGoogle Scholar
  85. 85.
    Yang Y, Yang ZH, Lv JJ, Yuan R, Chai YQ. Thrombin aptasensor enabled by Pt nanoparticles-functionalized Co-based metal organic frameworks assisted electrochemical signal amplification. Talanta. 2017;169:44–9.Google Scholar
  86. 86.
    Xie SB, Ye JW, Yuan YL, Chai YQ, Yuan R. A multifunctional hemin@metal–organic framework and its application to construct an electrochemical aptasensor for thrombin detection. Nanoscale. 2015;7:18232–8.CrossRefGoogle Scholar
  87. 87.
    Ling PH, Lei JP, Ju HX. Nanoscaled porphyrinic metal–organic frameworks for electrochemical detection of telomerase activity via telomerase triggered conformation switch. Anal Chem. 2016;88:10680–6.CrossRefGoogle Scholar
  88. 88.
    Shen WJ, Zhuo Y, Chai YQ, Yuan R. Ce-based metal-organic frameworks and DNAzyme-assisted recycling as dual signal amplifiers for sensitive electrochemical detection of lipopolysaccharide. Biosens Bioelectron. 2016;83:287–92.CrossRefGoogle Scholar
  89. 89.
    Ling PH, Lei JP, Jia L, Ju HX. Platinum nanoparticles encapsulated metal–organic frameworks for the electrochemical detection of telomerase activity. Chem Commun. 2016;52:1226–9.CrossRefGoogle Scholar
  90. 90.
    Shi P, Zhan Y, Yu Z, Zhang SS. Label-free electrochemical detection of ATP based on amino-functionalized metal-organic framework. Sci Rep. 2017;7:6500.  https://doi.org/10.1038/s41598-017-06858-w.
  91. 91.
    Polsky R, Gill R, Kaganovsky L, Willner I. Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Anal Chem. 2006;78:2268–71.CrossRefGoogle Scholar
  92. 92.
    Jiang Y, Sun D, Liang Z, Chen L, Zhang Y, Chen Z. Label-free and competitive aptamer cytosensor based on layer-by-layer assembly of DNA-platinum nanoparticles for ultrasensitive determination of tumor cells. Sensors Actuators B Chem. 2018;262:35–43.CrossRefGoogle Scholar
  93. 93.
    Chen M, Wang Y, Su H, Li M, Jiang X, Zhang T, et al. Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sensors Actuators B Chem. 2018;255:2910–8.CrossRefGoogle Scholar
  94. 94.
    Siddiquee S, Rovina K, Yusof NA, Rodrigues KF. Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Sens Biosensing Res. 2014;2:16–22.CrossRefGoogle Scholar
  95. 95.
    Singhal C, Pundir CS, Narang J. A genosensor for detection of consensus DNA sequence of dengue virus using ZnO/Pt-Pd nanocomposites. Biosens Bioelectron. 2017;97:75–82.CrossRefGoogle Scholar
  96. 96.
    Serafín V, Torrente-Rodríguez RM, González-Cortés A, García de Frutos P, Sabaté M, Campuzano S, et al. An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry. Talanta. 2018;179:131–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química Analítica, Facultad de CC. QuímicasUniversidad Complutense de MadridMadridSpain
  2. 2.IMDEA NanoscienceCiudad Universitaria de CantoblancoMadridSpain

Personalised recommendations