Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6441–6457 | Cite as

Current trends in supercritical fluid chromatography

  • Caroline West
Review

Abstract

Supercritical fluid chromatography (SFC), which employs pressurized carbon dioxide as the major component of the mobile phase, has been known for several decades but has faced a significant resurgence of interest in the recent years, thanks to the development of modern instruments to comply with current expectations in terms of robustness and sensitivity. This review is focused on the recent literature, specifically since the introduction of modern systems but in relation to older literature, to identify the changing trends in application domains. Typically, natural products, bioanalysis, food science, and environmental analyses are all strongly increasing. Together with reduced extra-column volumes in the instruments, the advent of sub-2-μm particles and superficially porous particles in the stationary phases is favoring ultra-high-performance SFC (UHPSFC) allowing for improved resolution and faster analyses, but without the constraints of viscous liquids encountered in ultra-high-performance liquid chromatography (UHPLC). Hyphenation to mass spectrometry is also more frequent and opened the way to new application domains, and raises different issues from liquid chromatography mobile phases, especially due to decompression of carbon dioxide. It is also shown that the frontiers between SFC and HPLC are fading, as switching from one method to the other, even within the course of a single analysis, is facilitated my modern instruments. The present review is not intended to be exhaustive but rather giving a snapshot of recent trends in supercritical fluid chromatography, based on the observation of about 500 papers published in English-written peer-reviewed journals from 2014 to 2018.

Graphical abstract

Keywords

Convergence chromatography Hyphenation to mass spectrometry Supercritical fluid chromatography Ultra-high-performance supercritical fluid chromatography 

Notes

Funding information

Caroline West is grateful for the support received by the Institut Universitaire de France (IUF), of which she is a Junior Member.

Compliance with ethical standards

Conflict of interest

Caroline West has received support in her research from Waters Corporation through the Centers of Innovation Program.

References

  1. 1.
    Tarafder A. Metamorphosis of supercritical fluid chromatography to SFC: an overview. TrAC Trends in Anal Chem. 2016;81:3–10.  https://doi.org/10.1016/j.trac.2016.01.002.CrossRefGoogle Scholar
  2. 2.
    Lesellier E, West C. The many faces of packed column supercritical fluid chromatography - a critical review. J Chromatogr A. 2015;1382:2–46.  https://doi.org/10.1016/j.chroma.2014.12.083.CrossRefPubMedGoogle Scholar
  3. 3.
    Nováková L, Grand-Guillaume Perrenoud A, Francois I, West C, Lesellier E, Guillarme D. Modern analytical supercritical fluid chromatography using columns packed with sub-2 μm particles: a tutorial. Anal Chim Acta. 2014;824:18–35.  https://doi.org/10.1016/j.aca.2014.03.034.CrossRefPubMedGoogle Scholar
  4. 4.
    Berger TA, Fogleman K. Improving signal-to-noise ratio and dynamic range in supercritical fluid chromatography with UV detection. The Peak E-Zine. 2009.Google Scholar
  5. 5.
    Berger TA, Berger BK. Minimizing UV noise in supercritical fluid chromatography. I. Improving back pressure regulator pressure noise. J Chromatogr A. 2011;1218:2320–6.  https://doi.org/10.1016/j.chroma.2011.02.030.CrossRefPubMedGoogle Scholar
  6. 6.
    Herrero M, Cifuentes A, Ibañez E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem. 2006;98:136–48.  https://doi.org/10.1016/j.foodchem.2005.05.058.CrossRefGoogle Scholar
  7. 7.
    Sakai M, Hayakawa Y, Funada Y, Ando T, Fukusaki E, Bamba T. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography. J Chromatogr A. 2017;1515:218–31.  https://doi.org/10.1016/j.chroma.2017.07.077.CrossRefPubMedGoogle Scholar
  8. 8.
    Giuffrida D, Zoccali M, Arigò A, Cacciola F, Roa CO, Dugo P, et al. Comparison of different analytical techniques for the analysis of carotenoids in tamarillo (Solanum betaceum Cav.). Arch Biochem Biophys. 2018;646:161–7.  https://doi.org/10.1016/j.abb.2018.03.011.CrossRefPubMedGoogle Scholar
  9. 9.
    Zoccali M, Giuffrida D, Dugo P, Mondello L. Direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry of targeted carotenoids from red habanero peppers (Capsicum chinense Jacq.). J Sep Sci. 2017;40:3905–13.  https://doi.org/10.1002/jssc.201700669.CrossRefPubMedGoogle Scholar
  10. 10.
    Wicker AP, Carlton DD, Tanaka K, Nishimura M, Chen V, Ogura T, et al. On-line supercritical fluid extraction—supercritical fluid chromatography-mass spectrometry of polycyclic aromatic hydrocarbons in soil. J Chromatogr B. 2018;1086:82–8.  https://doi.org/10.1016/j.jchromb.2018.04.014.CrossRefGoogle Scholar
  11. 11.
    Matsubara A, Harada K, Hirata K, Fukusaki E, Bamba T. High-accuracy analysis system for the redox status of coenzyme Q10 by online supercritical fluid extraction–supercritical fluid chromatography/mass spectrometry. J Chromatogr A. 2012;1250:76–9.  https://doi.org/10.1016/j.chroma.2012.05.009.CrossRefPubMedGoogle Scholar
  12. 12.
    Hofstetter R, Fassauer GM, Link A. Supercritical fluid extraction (SFE) of ketamine metabolites from dried urine and on-line quantification by supercritical fluid chromatography and single mass detection (on-line SFE–SFC–MS). J Chromatogr B. 2018;1076:77–83.  https://doi.org/10.1016/j.jchromb.2018.01.024.CrossRefGoogle Scholar
  13. 13.
    Suzuki M, Nishiumi S, Kobayashi T, Sakai A, Iwata Y, Uchikata T, et al. Use of on-line supercritical fluid extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze disease biomarkers in dried serum spots compared with serum analysis using liquid chromatography/tandem mass spectrometry: SFE-SFC/MS/MS to analyze disease biomarkers in dried serum spots. Rapid Commun Mass Spectrom. 2017;31:886–94.  https://doi.org/10.1002/rcm.7857.CrossRefPubMedGoogle Scholar
  14. 14.
    Yang B, Xin H, Wang F, Cai J, Liu Y, Fu Q, et al. Purification of lignans from Fructus Arctii using off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography. J Sep Sci. 2017;40:3231–8.  https://doi.org/10.1002/jssc.201700139.CrossRefPubMedGoogle Scholar
  15. 15.
    Li K, Fu Q, Xin H, Ke Y, Jin Y, Liang X. Alkaloids analysis using off-line two-dimensional supercritical fluid chromatography × ultra-high performance liquid chromatography. Analyst. 2014;139:3577–87.  https://doi.org/10.1039/C4AN00438H.CrossRefPubMedGoogle Scholar
  16. 16.
    Sarrut M, Corgier A, Crétier G, Le Masle A, Dubant S, Heinisch S. Potential and limitations of on-line comprehensive reversed phase liquid chromatography×supercritical fluid chromatography for the separation of neutral compounds: an approach to separate an aqueous extract of bio-oil. J Chromatogr A. 2015;1402:124–33.  https://doi.org/10.1016/j.chroma.2015.05.005.CrossRefPubMedGoogle Scholar
  17. 17.
    Sun M, Sandahl M, Turner C. Comprehensive on-line two-dimensional liquid chromatography × supercritical fluid chromatography with trapping column-assisted modulation for depolymerised lignin analysis. J Chromatogr A. 2018;1541:21–30.  https://doi.org/10.1016/j.chroma.2018.02.008.CrossRefPubMedGoogle Scholar
  18. 18.
    Venkatramani CJ, Al-Sayah M, Li G, Goel M, Girotti J, Zang L, et al. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography. Talanta. 2016;148:548–55.  https://doi.org/10.1016/j.talanta.2015.10.054.CrossRefPubMedGoogle Scholar
  19. 19.
    Goel M, Larson E, Venkatramani CJ, Al-Sayah MA. Optimization of a two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFS-MS) system to assess “in-vivo” inter-conversion of chiral drug molecules. J Chromatogr B. 2018;1084:89–95.  https://doi.org/10.1016/j.jchromb.2018.03.029.CrossRefGoogle Scholar
  20. 20.
    Stevenson PG, Tarafder A, Guiochon G. Comprehensive two-dimensional chromatography with coupling of reversed phase high performance liquid chromatography and supercritical fluid chromatography. J Chromatogr A. 2012;1220:175–8.  https://doi.org/10.1016/j.chroma.2011.11.020.CrossRefPubMedGoogle Scholar
  21. 21.
    Petkovic O, Guibal P, Sassiat P, Vial J, Thiébaut D. Active modulation in neat carbon dioxide packed column comprehensive two-dimensional supercritical fluid chromatography. J Chromatogr A. 2018;1536:176–84.  https://doi.org/10.1016/j.chroma.2017.08.063.CrossRefPubMedGoogle Scholar
  22. 22.
    Zeng L, Xu R, Zhang Y, Kassel DB. Two-dimensional supercritical fluid chromatography/mass spectrometry for the enantiomeric analysis and purification of pharmaceutical samples. J Chromatogr A. 2011;1218:3080–8.  https://doi.org/10.1016/j.chroma.2011.03.041.CrossRefPubMedGoogle Scholar
  23. 23.
    Fairchild JN, Brousmiche DW, Hill JF, Morris MF, Boissel CA, Wyndham KD. Chromatographic evidence of silyl ether formation (SEF) in supercritical fluid chromatography. Anal Chem. 2015;87:1735–42.  https://doi.org/10.1021/ac5035709.CrossRefPubMedGoogle Scholar
  24. 24.
    Desfontaine V, Veuthey J-L, Guillarme D. Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography. J Chromatogr A. n.d.  https://doi.org/10.1016/j.chroma.2016.02.029.CrossRefGoogle Scholar
  25. 25.
    West C, Lemasson E, Bertin S, Hennig P, Lesellier E. An improved classification of stationary phases for ultra-high performance supercritical fluid chromatography. J Chromatogr A. 2016;1440:212–28.  https://doi.org/10.1016/j.chroma.2016.02.052.CrossRefPubMedGoogle Scholar
  26. 26.
    Jones JW, Carter CL, Li F, Yu J, Pierzchalski K, Jackson IL, et al. Ultraperformance convergence chromatography-high resolution tandem mass spectrometry for lipid biomarker profiling and identification: UPCC-HRMS for lipid biomarker profiling and ID. Biomed Chromatogr. 2017;31:e3822.  https://doi.org/10.1002/bmc.3822.CrossRefGoogle Scholar
  27. 27.
    de Souza GL, Jardim ICSF, de Melo LV, Beppu MM, Breitkreitz MC, Santana CC. Study of the effect of the operating parameters on the separation of bioactive compounds of palm oil by ultra-high performance supercritical fluid chromatography using a design of experiments approach. Can J Chem Eng. 2017;95:2306–14.  https://doi.org/10.1002/cjce.22969.CrossRefGoogle Scholar
  28. 28.
    Gao B, Luo Y, Lu W, Liu J, Zhang Y, Yu L(L). Triacylglycerol compositions of sunflower, corn and soybean oils examined with supercritical CO2 ultra-performance convergence chromatography combined with quadrupole time-of-flight mass spectrometry. Food Chem. 2017;218:569–74.  https://doi.org/10.1016/j.foodchem.2016.09.099.CrossRefPubMedGoogle Scholar
  29. 29.
    Duval J, Colas C, Pecher V, Poujol M, Tranchant J-F, Lesellier É. Contribution of supercritical fluid chromatography coupled to high resolution mass spectrometry and UV detections for the analysis of a complex vegetable oil – application for characterization of a Kniphofia uvaria extract. Comptes Rendus Chimie. 2016;19:1113–23.  https://doi.org/10.1016/j.crci.2015.11.022.CrossRefGoogle Scholar
  30. 30.
    Lou C, Guo D, Zhang K, Wu C, Zhang P, Zhu Y. Simultaneous determination of 11 phthalate esters in bottled beverages by graphene oxide coated hollow fiber membrane extraction coupled with supercritical fluid chromatography. Anal Chim Acta. 2018;1007:71–9.  https://doi.org/10.1016/j.aca.2017.12.018.CrossRefPubMedGoogle Scholar
  31. 31.
    Yoshioka T, Nagatomi Y, Harayama K, Bamba T. Development of an analytical method for polycyclic aromatic hydrocarbons in coffee beverages and dark beer using novel high-sensitivity technique of supercritical fluid chromatography/mass spectrometry. J Biosci Bioeng. 2018.  https://doi.org/10.1016/j.jbiosc.2018.01.014.CrossRefGoogle Scholar
  32. 32.
    Cutillas V, Galera MM, Rajski Ł, Fernández-Alba AR. Evaluation of supercritical fluid chromatography coupled to tandem mass spectrometry for pesticide residues in food. J Chromatogr A. 2018;1545:67–74.  https://doi.org/10.1016/j.chroma.2018.02.048.CrossRefPubMedGoogle Scholar
  33. 33.
    Lemasson E, Bertin S, Hennig P, Boiteux H, Lesellier E, West C. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part II. Selection of an orthogonal set of stationary phases. J Chromatogr A. 2015;1408:227–35.  https://doi.org/10.1016/j.chroma.2015.07.035.CrossRefPubMedGoogle Scholar
  34. 34.
    Prothmann J, Sun M, Spégel P, Sandahl M, Turner C. Ultra-high-performance supercritical fluid chromatography with quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) for analysis of lignin-derived monomeric compounds in processed lignin samples. Anal Bioanal Chem. 2017.  https://doi.org/10.1007/s00216-017-0663-5.CrossRefGoogle Scholar
  35. 35.
    Qin X, Wang Y, Li A, Sun A, Yu L, Liu R. Separation and purification of six components from the roots of Rheum officinale Baill. by supercritical fluid chromatography. J Liq Chromatogr Relat Technol. 2017;40:156–64.  https://doi.org/10.1080/10826076.2017.1295389.CrossRefGoogle Scholar
  36. 36.
    Yang J, Zhu L, Zhao Y, Xu Y, Sun Q, Liu S, et al. Separation of furostanol saponins by supercritical fluid chromatography. J Pharm Biomed Anal. 2017;145:71–8.  https://doi.org/10.1016/j.jpba.2017.05.023.CrossRefPubMedGoogle Scholar
  37. 37.
    Yang W, Zhang Y, Pan H, Yao C, Hou J, Yao S, et al. Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla. J Pharm Biomed Anal. 2017;134:352–60.  https://doi.org/10.1016/j.jpba.2016.10.021.CrossRefPubMedGoogle Scholar
  38. 38.
    Al Hamimi S, Sandahl M, Armeni M, Turner C, Spégel P. Screening of stationary phase selectivities for global lipid profiling by ultrahigh performance supercritical fluid chromatography. J Chromatogr A. 2018;1548:76–82.  https://doi.org/10.1016/j.chroma.2018.03.024.CrossRefPubMedGoogle Scholar
  39. 39.
    Teubel J, Wüst B, Schipke CG, Peters O, Parr MK. Methods in endogenous steroid profiling – a comparison of gas chromatography mass spectrometry (GC–MS) with supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS). J Chromatogr A. 2018;1554:101–16.  https://doi.org/10.1016/j.chroma.2018.04.035.CrossRefPubMedGoogle Scholar
  40. 40.
    Nováková L, Desfontaine V, Ponzetto F, Nicoli R, Saugy M, Veuthey J-L, et al. Fast and sensitive supercritical fluid chromatography – tandem mass spectrometry multi-class screening method for the determination of doping agents in urine. Anal Chim Acta. 2016;915:102–10.  https://doi.org/10.1016/j.aca.2016.02.010.CrossRefPubMedGoogle Scholar
  41. 41.
    Oberson J-M, Campos-Giménez E, Rivière J, Martin F. Application of supercritical fluid chromatography coupled to mass spectrometry to the determination of fat-soluble vitamins in selected food products. J Chromatogr B. 2018;1086:118–29.  https://doi.org/10.1016/j.jchromb.2018.04.017.CrossRefGoogle Scholar
  42. 42.
    Dispas A, Desfontaine V, Andri B, Lebrun P, Kotoni D, Clarke A, et al. Quantitative determination of salbutamol sulfate impurities using achiral supercritical fluid chromatography. J Pharm Biomed Anal. 2017;134:170–80.  https://doi.org/10.1016/j.jpba.2016.11.039.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang B, Liu X, Zhou W, Hong Y, Feng S. Fast separation of flavonoids by supercritical fluid chromatography using a column packed with a sub-2 μm particle stationary phase. J Sep Sci. 2017;40:1410–20.  https://doi.org/10.1002/jssc.201601021.CrossRefPubMedGoogle Scholar
  44. 44.
    Muscat Galea C, Didion D, Clicq D, Mangelings D, Vander HY. Method optimization for drug impurity profiling in SFC: application to a pharmaceutical mixture. J Chromatogr A. n.d.  https://doi.org/10.1016/j.chroma.2017.10.036.CrossRefGoogle Scholar
  45. 45.
    Bennett R, Olesik SV. Enhanced fluidity liquid chromatography of inulin fructans using ternary solvent strength and selectivity gradients. Anal Chim Acta. 2018;999:161–8.  https://doi.org/10.1016/j.aca.2017.10.036.CrossRefPubMedGoogle Scholar
  46. 46.
    Bieber S, Greco G, Grosse S, Letzel T. RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (water) samples. Anal Chem. 2017;89:7907–14.  https://doi.org/10.1021/acs.analchem.7b00859.CrossRefPubMedGoogle Scholar
  47. 47.
    Lemasson E, Bertin S, Hennig P, Lesellier E, West C. Comparison of ultra-high performance methods in liquid and supercritical fluid chromatography coupled to electrospray ionization – mass spectrometry for impurity profiling of drug candidates. J Chromatogr A. 2016;1472:117–28.  https://doi.org/10.1016/j.chroma.2016.10.045.CrossRefPubMedGoogle Scholar
  48. 48.
    Mazzoccanti G, Ismail OH, D’Acquarica I, Villani C, Manzo C, Wilcox M, et al. Cannabis through the looking glass: chemo- and enantio-selective separation of phytocannabinoids by enantioselective ultra high performance supercritical fluid chromatography. Chem Commun. 2017;53:12262–5.  https://doi.org/10.1039/C7CC06999E.CrossRefGoogle Scholar
  49. 49.
    Khater S, West C, Lesellier E. Characterization of five chemistries and three particle sizes of stationary phases used in supercritical fluid chromatography. J Chromatogr A. 2013;1319:148–59.  https://doi.org/10.1016/j.chroma.2013.10.037.CrossRefPubMedGoogle Scholar
  50. 50.
    Lesellier E, Latos A, de Oliveira AL. Ultra high efficiency/low pressure supercritical fluid chromatography with superficially porous particles for triglyceride separation. J Chromatogr A. 2014;1327:141–8.  https://doi.org/10.1016/j.chroma.2013.12.046.CrossRefPubMedGoogle Scholar
  51. 51.
    Lesellier E. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases. J Chromatogr A. 2012;1228:89–98.  https://doi.org/10.1016/j.chroma.2011.11.058.CrossRefPubMedGoogle Scholar
  52. 52.
    Grand-Guillaume Perrenoud AG-G, Farrell WP, Aurigemma CM, Aurigemma NC, Fekete S, Guillarme D. Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography. J Chromatogr A. 2014;1360:275–87.  https://doi.org/10.1016/j.chroma.2014.07.078.CrossRefGoogle Scholar
  53. 53.
    Berger TA. Instrument modifications that produced reduced plate heights <2 with sub-2μm particles and 95% of theoretical efficiency at k=2 in supercritical fluid chromatography. J Chromatogr A. 2016;1444:129–44.  https://doi.org/10.1016/j.chroma.2016.03.021.CrossRefPubMedGoogle Scholar
  54. 54.
    Végh K, Riethmüller E, Tóth A, Alberti Á, Béni S, Balla J, et al. Convergence chromatographic determination of camphor in the essential oil of Tanacetum parthenium L.: convergence chromatographic determination of camphor in essential oil. Biomed Chromatogr. 2016;30:2031–7.  https://doi.org/10.1002/bmc.3781.CrossRefPubMedGoogle Scholar
  55. 55.
    Desfontaine V, Nováková L, Ponzetto F, Nicoli R, Saugy M, Veuthey J-L, et al. Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine. J Chromatogr A. 2016;1451:145–55.  https://doi.org/10.1016/j.chroma.2016.05.004.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhu L, Zhao Y, Xu Y, Sun Q, Sun X, Kang L, et al. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins. J Pharm Biomed Anal. 2016;120:72–8.  https://doi.org/10.1016/j.jpba.2015.12.002.CrossRefPubMedGoogle Scholar
  57. 57.
    Hori K, Hori-Koriyama N, Tsumura K, Fukusaki E, Bamba T. Insights into the formation mechanism of chloropropanol fatty acid esters under laboratory-scale deodorization conditions. J Biosci Bioeng. 2016;122:246–51.  https://doi.org/10.1016/j.jbiosc.2015.12.018.CrossRefPubMedGoogle Scholar
  58. 58.
    Duval J, Colas C, Pecher V, Poujol M, Tranchant J-F, Lesellier E. Hyphenation of ultra high performance supercritical fluid chromatography with atmospheric pressure chemical ionisation high resolution mass spectrometry: Part 1. Study of the coupling parameters for the analysis of natural non-polar compounds. J Chromatogr A. 2017;1509:132–40.  https://doi.org/10.1016/j.chroma.2017.06.016.CrossRefPubMedGoogle Scholar
  59. 59.
    Gritti F. Unexpected retention and efficiency behaviors in supercritical fluid chromatography: a thermodynamic interpretation. J Chromatogr A. 2016;1468:209–16.  https://doi.org/10.1016/j.chroma.2016.09.020.CrossRefPubMedGoogle Scholar
  60. 60.
    Helmueller SC, Poe DP. Efficiency studies in supercritical fluid chromatography: importance of thermal diffusivity near the critical point. Biophys J. 2014;106:622a.  https://doi.org/10.1016/j.bpj.2013.11.3440.CrossRefGoogle Scholar
  61. 61.
    Delahaye S, Broeckhoven K, Desmet G, Lynen F. Application of the isopycnic kinetic plot method for elucidating the potential of sub-2 μm and core–shell particles in SFC. Talanta. 2013;116:1105–12.  https://doi.org/10.1016/j.talanta.2013.08.023.CrossRefPubMedGoogle Scholar
  62. 62.
    De Pauw R, Shoykhet (C)K, Desmet G, Broeckhoven K. Understanding and diminishing the extra-column band broadening effects in supercritical fluid chromatography. J Chromatogr A. 2015;1403:132–7.  https://doi.org/10.1016/j.chroma.2015.05.017.CrossRefPubMedGoogle Scholar
  63. 63.
    De Pauw R, Choikhet K, Desmet G, Broeckhoven K. Temperature effects in supercritical fluid chromatography: a trade-off between viscous heating and decompression cooling. J Chromatogr A. 2014;1365:212–8.  https://doi.org/10.1016/j.chroma.2014.09.022.CrossRefPubMedGoogle Scholar
  64. 64.
    Gritti F, Fogwill M, Gilar M, Jarrell JA. Maximizing performance in supercritical fluid chromatography using low-density mobile phases. J Chromatogr A. 2016;1468:217–27.  https://doi.org/10.1016/j.chroma.2016.09.024.CrossRefPubMedGoogle Scholar
  65. 65.
    De Pauw R, Shoykhet (C)K, Desmet G, Broeckhoven K. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography. J Chromatogr A. 2016;1459:129–35.  https://doi.org/10.1016/j.chroma.2016.06.040.CrossRefPubMedGoogle Scholar
  66. 66.
    Desfontaine V, Tarafder A, Hill J, Fairchild J, Grand-Guillaume Perrenoud A, Veuthey J-L, et al. A systematic investigation of sample diluents in modern supercritical fluid chromatography. J Chromatogr A. 2017;1511:122–31.  https://doi.org/10.1016/j.chroma.2017.06.075.CrossRefPubMedGoogle Scholar
  67. 67.
    Fairchild JN, Hill JF, Iraneta PC. Influence of sample solvent composition for SFC separations. LCGC N Am. 2013;31:326–33.Google Scholar
  68. 68.
    Enmark M, Åsberg D, Shalliker A, Samuelsson J, Fornstedt T. A closer study of peak distortions in supercritical fluid chromatography as generated by the injection. J Chromatogr A. 2015;1400:131–9.  https://doi.org/10.1016/j.chroma.2015.04.059.CrossRefPubMedGoogle Scholar
  69. 69.
    Siders PD. Simulated molecular-scale interaction of supercritical fluid mobile and stationary phases. J Chromatogr A. 2017;1527:97–104.  https://doi.org/10.1016/j.chroma.2017.10.056.CrossRefPubMedGoogle Scholar
  70. 70.
    Glenne E, Leek H, Klarqvist M, Samuelsson J, Fornstedt T. Systematic investigations of peak deformations due to co-solvent adsorption in preparative supercritical fluid chromatography. J Chromatogr A. 2017;1496:141–9.  https://doi.org/10.1016/j.chroma.2017.03.053.CrossRefPubMedGoogle Scholar
  71. 71.
    Glenne E, Öhlén K, Leek H, Klarqvist M, Samuelsson J, Fornstedt T. A closer study of methanol adsorption and its impact on solute retentions in supercritical fluid chromatography. J Chromatogr A. 2016;1442:129–39.  https://doi.org/10.1016/j.chroma.2016.03.006.CrossRefPubMedGoogle Scholar
  72. 72.
    Glenne E, Leek H, Klarqvist M, Samuelsson J, Fornstedt T. Peak deformations in preparative supercritical fluid chromatography due to co-solvent adsorption. J Chromatogr A. 2016;1468:200–8.  https://doi.org/10.1016/j.chroma.2016.09.019.CrossRefPubMedGoogle Scholar
  73. 73.
    Muscat Galea C, Mangelings D, Vander Heyden Y. Investigation of the effect of mobile phase composition on selectivity using a solvent-triangle based approach in achiral SFC. J Pharm Biomed Anal. 2017;132:247–57.  https://doi.org/10.1016/j.jpba.2016.10.016.CrossRefPubMedGoogle Scholar
  74. 74.
    Lemasson E, Bertin S, Hennig P, Boiteux H, Lesellier E, West C. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part I: optimization of mobile phase composition. J Chromatogr A. 2015;1408:217–26.  https://doi.org/10.1016/j.chroma.2015.07.037.CrossRefPubMedGoogle Scholar
  75. 75.
    Speybrouck D, Doublet C, Cardinael P, Fiol-Petit C, Corens D. The effect of high concentration additive on chiral separations in supercritical fluid chromatography. J Chromatogr A. 2017;1510:89–99.  https://doi.org/10.1016/j.chroma.2017.06.049.CrossRefPubMedGoogle Scholar
  76. 76.
    Geryk R, Kalíková K, Schmid MG, Tesařová E. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography. Anal Chim Acta. 2016;932:98–105.  https://doi.org/10.1016/j.aca.2016.04.044.CrossRefPubMedGoogle Scholar
  77. 77.
    Aranyi A, Ilisz I, Péter A, Fülöp F, West C. Exploring the enantioseparation of amino-naphthol analogues by supercritical fluid chromatography. J Chromatogr A. 2015;1387:123–33.  https://doi.org/10.1016/j.chroma.2015.01.084.CrossRefPubMedGoogle Scholar
  78. 78.
    West C, Melin J, Ansouri H, Mengue Metogo M. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: polarity and acidity of the mobile phase. J Chromatogr A. 2017;1492:136–43.  https://doi.org/10.1016/j.chroma.2017.02.066.CrossRefPubMedGoogle Scholar
  79. 79.
    Andersson M, Rodriguez-Meizoso I, Turner C, Hjort K, Klintberg L. Dynamic pH determination at high pressure of aqueous additive mixtures in contact with dense CO 2. J Supercrit Fluids. 2018;136:95–101.  https://doi.org/10.1016/j.supflu.2018.02.012.CrossRefGoogle Scholar
  80. 80.
    Ebinger K, Weller HN. Comparative assessment of achiral stationary phases for high throughput analysis in supercritical fluid chromatography. J Chromatogr A. 2014;1332:73–81.  https://doi.org/10.1016/j.chroma.2014.01.060.CrossRefPubMedGoogle Scholar
  81. 81.
    Delahaye S, Lynen F. Implementing stationary-phase optimized selectivity in supercritical fluid chromatography. Anal Chem. 2014;86:12220–8.  https://doi.org/10.1021/ac503313j.CrossRefPubMedGoogle Scholar
  82. 82.
    Vera CM, Shock D, Dennis GR, Samuelsson J, Enmark M, Fornstedt T, et al. Contrasting selectivity between HPLC and SFC using phenyl-type stationary phases: a study on linear polynuclear aromatic hydrocarbons. Microchem J. 2015;119:40–3.  https://doi.org/10.1016/j.microc.2014.10.008.CrossRefGoogle Scholar
  83. 83.
    Wolrab D, Macíková P, Boras M, Kohout M, Lindner W. Strong cation exchange chiral stationary phase—a comparative study in high-performance liquid chromatography and subcritical fluid chromatography. J Chromatogr A. 2013;1317:59–66.  https://doi.org/10.1016/j.chroma.2013.08.037.CrossRefPubMedGoogle Scholar
  84. 84.
    West C, Lemasson E, Bertin S, Hennig P, Lesellier E. Interest of achiral-achiral tandem columns for impurity profiling of synthetic drugs with supercritical fluid chromatography. J Chromatogr A. 2018;1534:161–9.  https://doi.org/10.1016/j.chroma.2017.12.061.CrossRefPubMedGoogle Scholar
  85. 85.
    Wang C, Tymiak AA, Zhang Y. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter. Anal Chem. 2014;86:4033–40.  https://doi.org/10.1021/ac500530n.CrossRefPubMedGoogle Scholar
  86. 86.
    Pokrovskiy OI, Ustinovich KB, Usovich OI, Parenago OO, Lunin VV, Ovchinnikov DV, et al. A case of Z/E-isomers elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography. J Chromatogr A. 2017;1479:177–84.  https://doi.org/10.1016/j.chroma.2016.11.037.CrossRefPubMedGoogle Scholar
  87. 87.
    West C, Konjaria M-L, Shashviashvili N, Lemasson E, Bonnet P, Kakava R, et al. Enantioseparation of novel chiral sulfoxides on chlorinated polysaccharide stationary phases in supercritical fluid chromatography. J Chromatogr A. n.d.  https://doi.org/10.1016/j.chroma.2017.03.089.CrossRefGoogle Scholar
  88. 88.
    Khater S, Canault B, Azzimani T, Bonnet P, West C. Thermodynamic enantioseparation behavior of phenylthiohydantoin-amino acid derivatives in supercritical fluid chromatography on polysaccharide chiral stationary phases. J Sep Sci. 2018;41:1450–9.  https://doi.org/10.1002/jssc.201701196.CrossRefPubMedGoogle Scholar
  89. 89.
    Tyteca E, Desfontaine V, Desmet G, Guillarme D. Possibilities of retention modeling and computer assisted method development in supercritical fluid chromatography. J Chromatogr A. 2015;1381:219–28.  https://doi.org/10.1016/j.chroma.2014.12.077.CrossRefPubMedGoogle Scholar
  90. 90.
    Galea C, West C, Mangelings D, Vander Heyden Y. Is the solvation parameter model or its adaptations adequate to account for ionic interactions when characterizing stationary phases for drug impurity profiling with supercritical fluid chromatography? Anal Chim Acta. 2016;924:9–20.  https://doi.org/10.1016/j.aca.2016.04.014.CrossRefPubMedGoogle Scholar
  91. 91.
    Andri B, Dispas A, Marini RD, Hubert P, Sassiat P, Al Bakain R, et al. Combination of partial least squares regression and design of experiments to model the retention of pharmaceutical compounds in supercritical fluid chromatography. J Chromatogr A. 2017;1491:182–94.  https://doi.org/10.1016/j.chroma.2017.02.030.CrossRefPubMedGoogle Scholar
  92. 92.
    Enmark M, Samuelsson J, Forss E, Forssén P, Fornstedt T. Investigation of plateau methods for adsorption isotherm determination in supercritical fluid chromatography. J Chromatogr A. 2014;1354:129–38.  https://doi.org/10.1016/j.chroma.2014.05.070.CrossRefPubMedGoogle Scholar
  93. 93.
    Enmark M, Forssén P, Samuelsson J, Fornstedt T. Determination of adsorption isotherms in supercritical fluid chromatography. J Chromatogr A. 2013;1312:124–33.  https://doi.org/10.1016/j.chroma.2013.09.007.CrossRefPubMedGoogle Scholar
  94. 94.
    Guiochon G, Tarafder A. Fundamental challenges and opportunities for preparative supercritical fluid chromatography. J Chromatogr A. 2011;1218:1037–114.  https://doi.org/10.1016/j.chroma.2010.12.047.CrossRefPubMedGoogle Scholar
  95. 95.
    Tarafder A, Hudalla C, Iraneta P, Fountain KJ. A scaling rule in supercritical fluid chromatography. I. Theory for isocratic systems. J Chromatogr A. 2014;1362:278–93.  https://doi.org/10.1016/j.chroma.2014.08.009.CrossRefPubMedGoogle Scholar
  96. 96.
    Tarafder A, Hill JF. Scaling rule in SFC. II. A practical rule for isocratic systems. J Chromatogr A. 2017;1482:65–75.  https://doi.org/10.1016/j.chroma.2016.12.044.CrossRefPubMedGoogle Scholar
  97. 97.
    Enmark M, Åsberg D, Leek H, Öhlén K, Klarqvist M, Samuelsson J, et al. Evaluation of scale-up from analytical to preparative supercritical fluid chromatography. J Chromatogr A. 2015;1425:280–6.  https://doi.org/10.1016/j.chroma.2015.11.001.CrossRefPubMedGoogle Scholar
  98. 98.
    Guillarme D, Desfontaine V, Heinisch S, Veuthey J-L. What are the current solutions for interfacing supercritical fluid chromatography and mass spectrometry? J Chromatogr B. 2018;1083:160–70.  https://doi.org/10.1016/j.jchromb.2018.03.010.CrossRefGoogle Scholar
  99. 99.
    Tarafder A. Designs and methods for interfacing SFC with MS. J Chromatogr B. 2018;1091:1–13.  https://doi.org/10.1016/j.jchromb.2018.05.003.CrossRefGoogle Scholar
  100. 100.
    Wolrab D, Frühauf P, Gerner C. Direct coupling of supercritical fluid chromatography with tandem mass spectrometry for the analysis of amino acids and related compounds: comparing electrospray ionization and atmospheric pressure chemical ionization. Anal Chim Acta. 2017;981:106–15.  https://doi.org/10.1016/j.aca.2017.05.005.CrossRefPubMedGoogle Scholar
  101. 101.
    Ciclet O, Barron D, Bajic S, Veuthey J-L, Guillarme D, Grand-Guillaume PA. Natural compounds analysis using liquid and supercritical fluid chromatography hyphenated to mass spectrometry: evaluation of a new design of atmospheric pressure ionization source. J Chromatogr B. 2018;1083:1–11.  https://doi.org/10.1016/j.jchromb.2018.02.037.CrossRefGoogle Scholar
  102. 102.
    Fujito Y, Hayakawa Y, Izumi Y, Bamba T. Importance of optimizing chromatographic conditions and mass spectrometric parameters for supercritical fluid chromatography/mass spectrometry. J Chromatogr A. 2017;1508:138–47.  https://doi.org/10.1016/j.chroma.2017.05.071.CrossRefPubMedGoogle Scholar
  103. 103.
    Nováková L, Grand-Guillaume Perrenoud A, Nicoli R, Saugy M, Veuthey J-L, Guillarme D. Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. I: investigation of mobile phase and MS conditions. Anal Chim Acta. 2015;853:637–46.  https://doi.org/10.1016/j.aca.2014.10.004.CrossRefPubMedGoogle Scholar
  104. 104.
    Laboureur L, Bonneau N, Champy P, Brunelle A, Touboul D. Structural characterisation of acetogenins from Annona muricata by supercritical fluid chromatography coupled to high-resolution tandem mass spectrometry: structural characterization of acetogenins by SFC-HRMS/MS. Phytochem Anal. 2017.  https://doi.org/10.1002/pca.2700.CrossRefGoogle Scholar
  105. 105.
    Haglind A, Hedeland M, Arvidsson T, Pettersson CE. Major signal suppression from metal ion clusters in SFC/ESI-MS-cause and effects. J Chromatogr B. 2018;1084:96–105.  https://doi.org/10.1016/j.jchromb.2018.03.024.CrossRefGoogle Scholar
  106. 106.
    Desfontaine V, Capetti F, Nicoli R, Kuuranne T, Veuthey J-L, Guillarme D. Systematic evaluation of matrix effects in supercritical fluid chromatography versus liquid chromatography coupled to mass spectrometry for biological samples. J Chromatogr B. 2018;1079:51–61.  https://doi.org/10.1016/j.jchromb.2018.01.037.CrossRefGoogle Scholar
  107. 107.
    Svan A, Hedeland M, Arvidsson T, Pettersson CE. The differences in matrix effect between supercritical fluid chromatography and reversed phase liquid chromatography coupled to ESI/MS. Anal Chim Acta. 2018;1000:163–71.  https://doi.org/10.1016/j.aca.2017.10.014.CrossRefPubMedGoogle Scholar
  108. 108.
    Nováková L, Rentsch M, Grand-Guillaume Perrenoud A, Nicoli R, Saugy M, Veuthey J, et al. Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. II: analysis of biological samples. Anal Chim Acta. 2015;853:647–59.  https://doi.org/10.1016/j.aca.2014.10.007.CrossRefPubMedGoogle Scholar
  109. 109.
    Desfontaine V, Guillarme D, Francotte E, Nováková L. Supercritical fluid chromatography in pharmaceutical analysis. J Pharm Biomed Anal. n.d.  https://doi.org/10.1016/j.jpba.2015.03.007.CrossRefGoogle Scholar
  110. 110.
    Lemasson E, Bertin S, West C. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification. J Sep Sci. 2016;39:212–33.  https://doi.org/10.1002/jssc.201501062.CrossRefPubMedGoogle Scholar
  111. 111.
    Hicks MB, Regalado EL, Tan F, Gong X, Welch CJ. Supercritical fluid chromatography for GMP analysis in support of pharmaceutical development and manufacturing activities. J Pharm Biomed Anal. 2016;117:316–24.  https://doi.org/10.1016/j.jpba.2015.09.014.CrossRefPubMedGoogle Scholar
  112. 112.
    Dispas A, Lebrun P, Ziemons E, Marini R, Rozet E, Hubert P. Evaluation of the quantitative performances of supercritical fluid chromatography: from method development to validation. J Chromatogr A. 2014;1353:78–88.  https://doi.org/10.1016/j.chroma.2014.01.046.CrossRefPubMedGoogle Scholar
  113. 113.
    De Klerck K, Vander Heyden Y, Mangelings D. Generic chiral method development in supercritical fluid chromatography and ultra-performance supercritical fluid chromatography. J Chromatogr A. 2014;1363:311–22.  https://doi.org/10.1016/j.chroma.2014.06.011.CrossRefPubMedGoogle Scholar
  114. 114.
    Ismail OH, Ciogli A, Villani C, De Martino M, Pierini M, Cavazzini A, et al. Ultra-fast high-efficiency enantioseparations by means of a teicoplanin-based chiral stationary phase made on sub-2μm totally porous silica particles of narrow size distribution. J Chromatogr A. 2016;1427:55–68.  https://doi.org/10.1016/j.chroma.2015.11.071.CrossRefPubMedGoogle Scholar
  115. 115.
    Barhate CL, Joyce LA, Makarov AA, Zawatzky K, Bernardoni F, Schafer WA, et al. Ultrafast chiral separations for high throughput enantiopurity analysis. Chem Commun. 2017;53:509–12.  https://doi.org/10.1039/C6CC08512A.CrossRefGoogle Scholar
  116. 116.
    Welch CJ, Regalado EL. Estimating optimal time for fast chromatographic separations. J Sep Sci. 2014;37:2552–8.  https://doi.org/10.1002/jssc.201400508.CrossRefPubMedGoogle Scholar
  117. 117.
    Regalado EL, Welch CJ. Pushing the speed limit in enantioselective supercritical fluid chromatography: liquid chromatography. J Sep Sci. 2015;38:2826–32.  https://doi.org/10.1002/jssc.201500270.CrossRefPubMedGoogle Scholar
  118. 118.
    Zawatzky K, Biba M, Regalado EL, Welch CJ. MISER chiral supercritical fluid chromatography for high throughput analysis of enantiopurity. J Chromatogr A. 2016;1429:374–9.  https://doi.org/10.1016/j.chroma.2015.12.057.CrossRefPubMedGoogle Scholar
  119. 119.
    Schou-Pedersen AMV, Østergaard J, Johansson M, Dubant S, Frederiksen RB, Hansen SH. Evaluation of supercritical fluid chromatography for testing of PEG adducts in pharmaceuticals. J Pharm Biomed Anal. 2014;88:256–61.  https://doi.org/10.1016/j.jpba.2013.08.039.CrossRefPubMedGoogle Scholar
  120. 120.
    Lecoeur M, Decaudin B, Guillotin Y, Sautou V, Vaccher C. Comparison of high-performance liquid chromatography and supercritical fluid chromatography using evaporative light scattering detection for the determination of plasticizers in medical devices. J Chromatogr A. 2015;1417:104–15.  https://doi.org/10.1016/j.chroma.2015.09.026.CrossRefPubMedGoogle Scholar
  121. 121.
    Foulon C, Di Giulio P, Lecoeur M. Simultaneous determination of inorganic anions and cations by supercritical fluid chromatography using evaporative light scattering detection. J Chromatogr A. 2018;1534:139–49.  https://doi.org/10.1016/j.chroma.2017.12.047.CrossRefPubMedGoogle Scholar
  122. 122.
    Desfontaine V, Nováková L, Guillarme D. SFC–MS versus RPLC–MS for drug analysis in biological samples. Bioanalysis. 2015;7:1193–5.  https://doi.org/10.4155/bio.15.41.CrossRefPubMedGoogle Scholar
  123. 123.
    Dispas A, Jambo H, André S, Tyteca E, Hubert P. Supercritical fluid chromatography: a promising alternative to current bioanalytical techniques. Bioanalysis. 2018;10:107–24.  https://doi.org/10.4155/bio-2017-0211.CrossRefPubMedGoogle Scholar
  124. 124.
    Wang M, Wang Y-H, Avula B, Radwan MM, Wanas AS, Mehmedic Z, et al. Quantitative determination of cannabinoids in Cannabis and Cannabis products using ultra-high-performance supercritical fluid chromatography and diode array/mass spectrometric detection. J Forensic Sci. 2017;62:602–11.  https://doi.org/10.1111/1556-4029.13341.CrossRefPubMedGoogle Scholar
  125. 125.
    Segawa H, Iwata YT, Yamamuro T, Kuwayama K, Tsujikawa K, Kanamori T, et al. Enantioseparation of methamphetamine by supercritical fluid chromatography with cellulose-based packed column. Forensic Sci Int. 2017;273:39–44.  https://doi.org/10.1016/j.forsciint.2017.01.025.CrossRefPubMedGoogle Scholar
  126. 126.
    Li L. Direct enantiomer determination of methorphan by HPLC-MS and SFC-MS. Forensic Chem. 2016;2:82–5.  https://doi.org/10.1016/j.forc.2016.10.004.CrossRefGoogle Scholar
  127. 127.
    Tamura S, Koike Y, Takeda H, Koike T, Izumi Y, Nagasaka R, et al. Ameliorating effects of D-47, a newly developed compound, on lipid metabolism in an animal model of familial hypercholesterolemia (WHHLMI rabbits). Eur J Pharmacol. 2018;822:147–53.  https://doi.org/10.1016/j.ejphar.2018.01.013.CrossRefPubMedGoogle Scholar
  128. 128.
    Takeda H, Koike T, Izumi Y, Yamada T, Yoshida M, Shiomi M, et al. Lipidomic analysis of plasma lipoprotein fractions in myocardial infarction-prone rabbits. J Biosci Bioeng. 2015;120:476–82.  https://doi.org/10.1016/j.jbiosc.2015.02.015.CrossRefPubMedGoogle Scholar
  129. 129.
    Yamada T, Uchikata T, Sakamoto S, Yokoi Y, Nishiumi S, Yoshida M, et al. Supercritical fluid chromatography/Orbitrap mass spectrometry based lipidomics platform coupled with automated lipid identification software for accurate lipid profiling. J Chromatogr A. 2013;1301:237–42.  https://doi.org/10.1016/j.chroma.2013.05.057.CrossRefPubMedGoogle Scholar
  130. 130.
    Montenegro-Burke JR, Sutton JA, Rogers LM, Milne GL, McLean JA, Aronoff DM. Lipid profiling of polarized human monocyte-derived macrophages. Prostaglandins & Other Lipid Mediators. 2016;127:1–8.  https://doi.org/10.1016/j.prostaglandins.2016.11.002. CrossRefGoogle Scholar
  131. 131.
    Lísa M, Cífková E, Khalikova M, Ovčačíková M, Holčapek M. Lipidomic analysis of biological samples: comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods. J Chromatogr A. 2017;1525:96–108.  https://doi.org/10.1016/j.chroma.2017.10.022.CrossRefPubMedGoogle Scholar
  132. 132.
    Wang M, Carrell EJ, Ali Z, Avula B, Avonto C, Parcher JF, et al. Comparison of three chromatographic techniques for the detection of mitragynine and other indole and oxindole alkaloids in Mitragyna speciosa (kratom) plants: liquid chromatography. J Sep Sci. 2014;37:1411–8.  https://doi.org/10.1002/jssc.201301389.CrossRefPubMedGoogle Scholar
  133. 133.
    Huang Y, Tang G, Zhang T, Fillet M, Crommen J, Jiang Z. Supercritical fluid chromatography in traditional Chinese medicine analysis. J Pharm Biomed Anal. 2018;147:65–80.  https://doi.org/10.1016/j.jpba.2017.08.021.CrossRefPubMedGoogle Scholar
  134. 134.
    Eisath NG, Sturm S, Stuppner H. Supercritical fluid chromatography in natural product analysis–an update. Planta Med. 2018;84:361–71.  https://doi.org/10.1055/s-0037-1599461.CrossRefGoogle Scholar
  135. 135.
    Lee JW, Nagai T, Gotoh N, Fukusaki E, Bamba T. Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. J Chromatogr B. 2014;966:193–9.  https://doi.org/10.1016/j.jchromb.2014.01.040.CrossRefGoogle Scholar
  136. 136.
    Rathi D-N, Liew CY, Fairulnizal MNM, Isameyah D, Barknowitz G. Fat-soluble vitamin and carotenoid analysis in cooking oils by ultra-performance convergence chromatography. Food Anal Methods. 2017;10:1087–96.  https://doi.org/10.1007/s12161-016-0661-9.CrossRefGoogle Scholar
  137. 137.
    Giuffrida D, Zoccali M, Giofrè SV, Dugo P, Mondello L. Apocarotenoids determination in Capsicum chinense Jacq. cv. Habanero, by supercritical fluid chromatography-triple-quadrupole/mass spectrometry. Food Chem. 2017;231:316–23.  https://doi.org/10.1016/j.foodchem.2017.03.145.CrossRefPubMedGoogle Scholar
  138. 138.
    Jumaah F, Plaza M, Abrahamsson V, Turner C, Sandahl M. A fast and sensitive method for the separation of carotenoids using ultra-high performance supercritical fluid chromatography-mass spectrometry. Anal Bioanal Chem. 2016;408:5883–94.  https://doi.org/10.1007/s00216-016-9707-5.CrossRefPubMedGoogle Scholar
  139. 139.
    Li B, Zhao H, Liu J, Liu W, Fan S, Wu G, et al. Application of ultra-high performance supercritical fluid chromatography for the determination of carotenoids in dietary supplements. J Chromatogr A. 2015;1425:287–92.  https://doi.org/10.1016/j.chroma.2015.11.029.CrossRefPubMedGoogle Scholar
  140. 140.
    Abrahamsson V, Rodriguez-Meizoso I, Turner C. Determination of carotenoids in microalgae using supercritical fluid extraction and chromatography. J Chromatogr A. 2012;1250:63–8.  https://doi.org/10.1016/j.chroma.2012.05.069.CrossRefPubMedGoogle Scholar
  141. 141.
    Matsubara A, Bamba T, Ishida H, Fukusaki E, Hirata K. Highly sensitive and accurate profiling of carotenoids by supercritical fluid chromatography coupled with mass spectrometry. J Sep Sci. 2009;32:1459–64.  https://doi.org/10.1002/jssc.200800699.CrossRefPubMedGoogle Scholar
  142. 142.
    Murauer A, Ganzera M. Quantitative determination of major alkaloids in Cinchona bark by supercritical fluid chromatography. J Chromatogr A. 2018.  https://doi.org/10.1016/j.chroma.2018.04.038.CrossRefGoogle Scholar
  143. 143.
    Fu Q, Li Z, Sun C, Xin H, Ke Y, Jin Y, et al. Rapid and simultaneous analysis of sesquiterpene pyridine alkaloids from Tripterygium wilfordii Hook. f. Using supercritical fluid chromatography-diode array detector-tandem mass spectrometry. J Supercrit Fluids. 2015;104:85–93.  https://doi.org/10.1016/j.supflu.2015.05.006.CrossRefGoogle Scholar
  144. 144.
    Aichner D, Ganzera M. Analysis of anthraquinones in rhubarb (Rheum palmatum and Rheum officinale) by supercritical fluid chromatography. Talanta. 2015;144:1239–44.  https://doi.org/10.1016/j.talanta.2015.08.011.CrossRefPubMedGoogle Scholar
  145. 145.
    Duval J, Destandau E, Pecher V, Poujol M, Tranchant J-F, Lesellier E. Selective enrichment in bioactive compound from Kniphofia uvaria by super/subcritical fluid extraction and centrifugal partition chromatography. J Chromatogr A. 2016;1447:26–38.  https://doi.org/10.1016/j.chroma.2016.04.029.CrossRefPubMedGoogle Scholar
  146. 146.
    Winderl B, Schwaiger S, Ganzera M. Fast and improved separation of major coumarins in Ammi visnaga (L.) Lam. by supercritical fluid chromatography: other techniques. J Sep Sci. 2016;39:4042–8.  https://doi.org/10.1002/jssc.201600734.CrossRefPubMedGoogle Scholar
  147. 147.
    Pfeifer I, Murauer A, Ganzera M. Determination of coumarins in the roots of Angelica dahurica by supercritical fluid chromatography. J Pharm Biomed Anal. 2016;129:246–51.  https://doi.org/10.1016/j.jpba.2016.07.014.CrossRefPubMedGoogle Scholar
  148. 148.
    Huang Y, Zhang T, Zhou H, Feng Y, Fan C, Chen W, et al. Fast separation of triterpenoid saponins using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J Pharm Biomed Anal. 2016;121:22–9.  https://doi.org/10.1016/j.jpba.2015.12.056.CrossRefPubMedGoogle Scholar
  149. 149.
    Huang Y, Feng Y, Tang G, Li M, Zhang T, Fillet M, et al. Development and validation of a fast SFC method for the analysis of flavonoids in plant extracts. J Pharm Biomed Anal. 2017;140:384–91.  https://doi.org/10.1016/j.jpba.2017.03.012.CrossRefPubMedGoogle Scholar
  150. 150.
    Qiao X, Song W, Wang Q, Liu K, Zhang Z, Bo T, et al. Comprehensive chemical analysis of triterpenoids and polysaccharides in the medicinal mushroom Antrodia cinnamomea. RSC Adv. 2015;5:47040–52.  https://doi.org/10.1039/C5RA04327A.CrossRefGoogle Scholar
  151. 151.
    Pauk V, Pluháček T, Havlíček V, Lemr K. Ultra-high performance supercritical fluid chromatography-mass spectrometry procedure for analysis of monosaccharides from plant gum binders. Anal Chim Acta. 2017.  https://doi.org/10.1016/j.aca.2017.07.036. CrossRefGoogle Scholar
  152. 152.
    Huang Y, Zhang T, Zhao Y, Zhou H, Tang G, Fillet M, et al. Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J Pharm Biomed Anal. 2017;144:213–9.  https://doi.org/10.1016/j.jpba.2017.03.059.CrossRefPubMedGoogle Scholar
  153. 153.
    Xin H, Dai Z, Cai J, Ke Y, Shi H, Fu Q, et al. Rapid purification of diastereoisomers from Piper kadsura using supercritical fluid chromatography with chiral stationary phases. J Chromatogr A. 2017;1509:141–6.  https://doi.org/10.1016/j.chroma.2017.06.020.CrossRefPubMedGoogle Scholar
  154. 154.
    Zhang L, Sun A, Li A, Kang J, Wang Y, Liu R. Isolation and purification of osthole and imperatorin from Fructus Cnidii by semi-preparative supercritical fluid chromatography. J Liq Chromatogr Relat Technol. 2017;40:407–14.  https://doi.org/10.1080/10826076.2017.1315723.CrossRefGoogle Scholar
  155. 155.
    Nothias L-F, Boutet-Mercey S, Cachet X, De La Torre E, Laboureur L, Gallard J-F, et al. Environmentally friendly procedure based on supercritical fluid chromatography and tandem mass spectrometry molecular networking for the discovery of potent antiviral compounds from Euphorbia semiperfoliata. J Nat Prod. 2017;80:2620–9.  https://doi.org/10.1021/acs.jnatprod.7b00113.CrossRefPubMedGoogle Scholar
  156. 156.
    Scheuba J, Wronski V-K, Rollinger J, Grienke U. Fast and green – CO2 based extraction, isolation, and quantification of phenolic Styrax constituents. Planta Med. 2017;83:1068–75.  https://doi.org/10.1055/s-0043-105499.CrossRefPubMedGoogle Scholar
  157. 157.
    Nie L, Dai Z, Ma S. Improved chiral separation of (R,S)-goitrin by SFC: an application in traditional Chinese medicine. J Anal Meth Chem. 2016;2016:1–5.  https://doi.org/10.1155/2016/5782942.CrossRefGoogle Scholar
  158. 158.
    Ashraf-Khorassani M, Coleman WM, Dube MF, Isaac G, Taylor LT. Synthesis, purification, and quantification of fatty acid ethyl esters after trans-esterification of large batches of tobacco seed oil. Contrib Tobacco Res. 2015;26  https://doi.org/10.1515/cttr-2015-0008.
  159. 159.
    Han NM, Choo MY. Enhancing the separation and purification efficiency of palm oil carotenes using supercritical fluid chromatography. J Palm Oil Res. 2015;27:387–92.Google Scholar
  160. 160.
    Song W, Qiao X, Liang W, Ji S, Yang L, Wang Y, et al. Efficient separation of curcumin, demethoxycurcumin, and bisdemethoxycurcumin from turmeric using supercritical fluid chromatography: from analytical to preparative scale: sample preparation. J Sep Sci. 2015;38:3450–3.  https://doi.org/10.1002/jssc.201500686.CrossRefPubMedGoogle Scholar
  161. 161.
    Krief A, Dunkle M, Bahar M, Bultinck P, Herrebout W, Sandra P. Elucidation of the absolute configuration of rhizopine by chiral supercritical fluid chromatography and vibrational circular dichroism: other techniques. J Sep Sci. 2015;38:2545–50.  https://doi.org/10.1002/jssc.201500138.CrossRefPubMedGoogle Scholar
  162. 162.
    Samimi R, Xu WZ, Alsharari Q, Charpentier PA. Supercritical fluid chromatography of North American ginseng extract. J Supercrit Fluids. 2014;86:115–23.  https://doi.org/10.1016/j.supflu.2013.12.004.CrossRefGoogle Scholar
  163. 163.
    Fernández-Ponce MT, Casas L, Mantell C, Martínez de la Ossa E. Fractionation of Mangifera indica Linn polyphenols by reverse phase supercritical fluid chromatography (RP-SFC) at pilot plant scale. J Supercrit Fluids. 2014;95:444–56.  https://doi.org/10.1016/j.supflu.2014.10.005.CrossRefGoogle Scholar
  164. 164.
    Zhou Q, Gao B, Zhang X, Xu Y, Shi H, Yu L(L). Chemical profiling of triacylglycerols and diacylglycerols in cow milk fat by ultra-performance convergence chromatography combined with a quadrupole time-of-flight mass spectrometry. Food Chem. 2014;143:199–204.  https://doi.org/10.1016/j.foodchem.2013.07.114. CrossRefPubMedGoogle Scholar
  165. 165.
    Tu A, Ma Q, Bai H, Du Z. A comparative study of triacylglycerol composition in Chinese human milk within different lactation stages and imported infant formula by SFC coupled with Q-TOF-MS. Food Chem. 2017;221:555–67.  https://doi.org/10.1016/j.foodchem.2016.11.139.CrossRefPubMedGoogle Scholar
  166. 166.
    Qi N, Gong X, Feng C, Wang X, Xu Y, Lin L. Simultaneous analysis of eight vitamin E isomers in Moringa oleifera Lam. leaves by ultra performance convergence chromatography. Food Chem. 2016;207:157–61.  https://doi.org/10.1016/j.foodchem.2016.03.089.CrossRefPubMedGoogle Scholar
  167. 167.
    Zhang Y, Du Z, Xia X, Guo Q, Wu H, Yu W. Evaluation of the migration of UV-ink photoinitiators from polyethylene food packaging by supercritical fluid chromatography combined with photodiode array detector and tandem mass spectrometry. Polym Test. 2016;53:276–82.  https://doi.org/10.1016/j.polymertesting.2016.06.008.CrossRefGoogle Scholar
  168. 168.
    Tao Y, Zheng Z, Yu Y, Xu J, Liu X, Wu X, et al. Supercritical fluid chromatography–tandem mass spectrometry-assisted methodology for rapid enantiomeric analysis of fenbuconazole and its chiral metabolites in fruits, vegetables, cereals, and soil. Food Chem. 2018;241:32–9.  https://doi.org/10.1016/j.foodchem.2017.08.038.CrossRefPubMedGoogle Scholar
  169. 169.
    Li R, Chen Z, Dong F, Xu J, Liu X, Wu X, et al. Supercritical fluid chromatographic-tandem mass spectrometry method for monitoring dissipation of thiacloprid in greenhouse vegetables and soil under different application modes. J Chromatogr B. 2018;1081–1082:25–32.  https://doi.org/10.1016/j.jchromb.2018.02.021.CrossRefGoogle Scholar
  170. 170.
    Cheng Y, Zheng Y, Dong F, Li J, Zhang Y, Sun S, et al. Stereoselective analysis and dissipation of propiconazole in wheat, grapes, and soil by supercritical fluid chromatography–tandem mass spectrometry. J Agric Food Chem. 2017;65:234–43.  https://doi.org/10.1021/acs.jafc.6b04623.CrossRefPubMedGoogle Scholar
  171. 171.
    Pan X, Dong F, Xu J, Liu X, Chen Z, Zheng Y. Stereoselective analysis of novel chiral fungicide pyrisoxazole in cucumber, tomato and soil under different application methods with supercritical fluid chromatography/tandem mass spectrometry. J Hazard Mater. 2016;311:115–24.  https://doi.org/10.1016/j.jhazmat.2016.03.005.CrossRefPubMedGoogle Scholar
  172. 172.
    Liu N, Dong F, Xu J, Liu X, Chen Z, Pan X, et al. Enantioselective separation and pharmacokinetic dissipation of cyflumetofen in field soil by ultra-performance convergence chromatography with tandem mass spectrometry. J Sep Sci. 2016;39:1363–70.  https://doi.org/10.1002/jssc.201501123.CrossRefPubMedGoogle Scholar
  173. 173.
    Chen X, Dong F, Xu J, Liu X, Chen Z, Liu N, et al. Enantioseparation and determination of isofenphos-methyl enantiomers in wheat, corn, peanut and soil with supercritical fluid chromatography/tandem mass spectrometric method. J Chromatogr B. 2016;1015–1016:13–21.  https://doi.org/10.1016/j.jchromb.2016.02.003.CrossRefGoogle Scholar
  174. 174.
    Tao Y, Dong F, Xu J, Liu X, Cheng Y, Liu N, et al. Green and sensitive supercritical fluid chromatographic–tandem mass spectrometric method for the separation and determination of flutriafol enantiomers in vegetables, fruits, and soil. J Agric Food Chem. 2014;62:11457–64.  https://doi.org/10.1021/jf504324t.CrossRefPubMedGoogle Scholar
  175. 175.
    Lou C, Wu C, Zhang K, Guo D, Jiang L, Lu Y, et al. Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. J Chromatogr A. 2018;1550:45–56.  https://doi.org/10.1016/j.chroma.2018.03.040.CrossRefPubMedGoogle Scholar
  176. 176.
    González-Mariño I, Thomas KV, Reid MJ. Determination of cannabinoid and synthetic cannabinoid metabolites in wastewater by liquid-liquid extraction and ultra-high performance supercritical fluid chromatography-tandem mass spectrometry: cannabinoid derivatives in wastewater by UHPSFC-MS/MS. Drug Test Anal. 2018;10:222–8.  https://doi.org/10.1002/dta.2199.CrossRefPubMedGoogle Scholar
  177. 177.
    Lorenzo M, Campo J, Picó Y. Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems. TrAC Trends in Anal Chem. 2018;103:137–55.  https://doi.org/10.1016/j.trac.2018.04.003.CrossRefGoogle Scholar
  178. 178.
    Zhou Y, Du Z, Zhang Y. Simultaneous determination of 17 disperse dyes in textile by ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry. Talanta. 2014;127:108–15.  https://doi.org/10.1016/j.talanta.2014.03.055.CrossRefPubMedGoogle Scholar
  179. 179.
    Khalikova MA, Šatínský D, Solich P, Nováková L. Development and validation of ultra-high performance supercritical fluid chromatography method for determination of illegal dyes and comparison to ultra-high performance liquid chromatography method. Anal Chim Acta. 2015;874:84–96.  https://doi.org/10.1016/j.aca.2015.03.003.CrossRefPubMedGoogle Scholar
  180. 180.
    Riddell N, van Bavel B, Ericson Jogsten I, McCrindle R, McAlees A, Chittim B. Examination of technical mixtures of halogen-free phosphorus based flame retardants using multiple analytical techniques. Chemosphere. 2017;176:333–41.  https://doi.org/10.1016/j.chemosphere.2017.02.129.CrossRefPubMedGoogle Scholar
  181. 181.
    Riddell N, van Bavel B, Ericson Jogsten I, McCrindle R, McAlees A, Chittim B. Coupling supercritical fluid chromatography to positive ion atmospheric pressure ionization mass spectrometry: ionization optimization of halogenated environmental contaminants. Int J Mass Spectrom. 2017;421:156–63.  https://doi.org/10.1016/j.ijms.2017.07.005.CrossRefGoogle Scholar
  182. 182.
    Gross MS, Olivos HJ, Butryn DM, Olson JR, Aga DS. Analysis of hydroxylated polybrominated diphenyl ethers (OH-BDEs) by supercritical fluid chromatography/mass spectrometry. Talanta. 2016;161:122–9.  https://doi.org/10.1016/j.talanta.2016.08.013.CrossRefPubMedGoogle Scholar
  183. 183.
    Thiébaut D. Separations of petroleum products involving supercritical fluid chromatography. J Chromatogr A. 2012;1252:177–88.  https://doi.org/10.1016/j.chroma.2012.06.074.CrossRefPubMedGoogle Scholar
  184. 184.
    Crepier J, Le Masle A, Charon N, Albrieux F, Heinisch S. Development of a supercritical fluid chromatography method with ultraviolet and mass spectrometry detection for the characterization of biomass fast pyrolysis bio oils. J Chromatogr A. 2017;1510:73–81.  https://doi.org/10.1016/j.chroma.2017.06.003.CrossRefPubMedGoogle Scholar
  185. 185.
    Crepier J, Le Masle A, Charon N, Albrieux F, Duchene P, Heinisch S. Ultra-high performance supercritical fluid chromatography hyphenated to atmospheric pressure chemical ionization high resolution mass spectrometry for the characterization of fast pyrolysis bio-oils. J Chromatogr B. 2018;1086:38–46.  https://doi.org/10.1016/j.jchromb.2018.04.005.CrossRefGoogle Scholar
  186. 186.
    Ashraf-Khorassani M, Yang J, Rainville P, Jones MD, Fountain KJ, Isaac G, et al. Ultrahigh performance supercritical fluid chromatography of lipophilic compounds with application to synthetic and commercial biodiesel. J Chromatogr B. 2015;983–984:94–100.  https://doi.org/10.1016/j.jchromb.2014.12.012.CrossRefGoogle Scholar
  187. 187.
    Lesellier E, Mith D, Dubrulle I. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics. J Chromatogr A. 2015;1423:158–68.  https://doi.org/10.1016/j.chroma.2015.10.053.CrossRefPubMedGoogle Scholar
  188. 188.
    Khater S, West C. Development and validation of a supercritical fluid chromatography method for the direct determination of enantiomeric purity of provitamin B5 in cosmetic formulations with mass spectrometric detection. J Pharm Biomed Anal. 2015;102:321–5.  https://doi.org/10.1016/j.jpba.2014.09.036.CrossRefPubMedGoogle Scholar
  189. 189.
    Yamamoto E, Hilton MJ, Orlandi M, Saini V, Toste FD, Sigman MS. Development and analysis of a Pd(0)-catalyzed enantioselective 1,1-diarylation of acrylates enabled by chiral anion phase transfer. J Am Chem Soc. 2016;138:15877–80.  https://doi.org/10.1021/jacs.6b11367.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Krupkova S, Aguete GP, Kocmanova L, Volna T, Grepl M, Novakova L, et al. Solid-phase synthesis of ɤ-lactone and 1,2-oxazine derivatives and their efficient chiral analysis. PLoS One. 2016;11:e0166558.  https://doi.org/10.1371/journal.pone.0166558.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Fassauer GM, Hofstetter R, Hasan M, Oswald S, Modeß C, Siegmund W, et al. Ketamine metabolites with antidepressant effects: fast, economical, and eco-friendly enantioselective separation based on supercritical-fluid chromatography (SFC) and single quadrupole MS detection. J Pharm Biomed Anal. 2017;146:410–9.  https://doi.org/10.1016/j.jpba.2017.09.007.CrossRefPubMedGoogle Scholar
  192. 192.
    Su C, Yang H, Meng X, Fawcett JP, Cao J, Yang Y, et al. Determination of rabeprazole enantiomers in dog plasma by supercritical fluid chromatography tandem mass spectrometry and its application to a pharmacokinetic study. J Sep Sci. 2017;40:1010–6.  https://doi.org/10.1002/jssc.201601232.CrossRefPubMedGoogle Scholar
  193. 193.
    Tan Q, Fan J, Gao R, He R, Wang T, Zhang Y, et al. Stereoselective quantification of triticonazole in vegetables by supercritical fluid chromatography. Talanta. 2017;164:362–7.  https://doi.org/10.1016/j.talanta.2016.08.077.CrossRefPubMedGoogle Scholar
  194. 194.
    Chen Z, Dong F, Pan X, Xu J, Liu X, Wu X, et al. Influence of uptake pathways on the stereoselective dissipation of chiral neonicotinoid sulfoxaflor in greenhouse vegetables. J Agric Food Chem. 2016;64:2655–60.  https://doi.org/10.1021/acs.jafc.5b05940.CrossRefPubMedGoogle Scholar
  195. 195.
    Camacho-Muñoz D, Kasprzyk-Hordern B, Thomas KV. Enantioselective simultaneous analysis of selected pharmaceuticals in environmental samples by ultrahigh performance supercritical fluid based chromatography tandem mass spectrometry. Anal Chim Acta. 2016;934:239–51.  https://doi.org/10.1016/j.aca.2016.05.051.CrossRefPubMedGoogle Scholar
  196. 196.
    Storch J, Kalíková K, Tesařová E, Maier V, Vacek J. Development of separation methods for the chiral resolution of hexahelicenes. J Chromatogr A. 2016;1476:130–4.  https://doi.org/10.1016/j.chroma.2016.10.083.CrossRefPubMedGoogle Scholar
  197. 197.
    Hoguet V, Charton J, Hecquet P-E, Lakhmi C, Lipka E. Supercritical fluid chromatography versus high performance liquid chromatography for enantiomeric and diastereoisomeric separations on coated polysaccharides-based stationary phases: application to dihydropyridone derivatives. J Chromatogr A. 2018;1549:39–50.  https://doi.org/10.1016/j.chroma.2018.03.035.CrossRefPubMedGoogle Scholar
  198. 198.
    Leek H, Thunberg L, Jonson AC, Öhlén K, Klarqvist M. Strategy for large-scale isolation of enantiomers in drug discovery. Drug Discov Today. 2017;22:133–9.  https://doi.org/10.1016/j.drudis.2016.09.018.CrossRefPubMedGoogle Scholar
  199. 199.
    Dai J, Wang C, Traeger SC, Discenza L, Obermeier MT, Tymiak AA, et al. The role of chromatographic and chiroptical spectroscopic techniques and methodologies in support of drug discovery for atropisomeric drug inhibitors of Bruton’s tyrosine kinase. J Chromatogr A. 2017;1487:116–28.  https://doi.org/10.1016/j.chroma.2017.01.016.CrossRefPubMedGoogle Scholar
  200. 200.
    Muscat Galea C, Slosse A, Mangelings D, Vander Heyden Y. Investigation of the effect of column temperature and back-pressure in achiral supercritical fluid chromatography within the context of drug impurity profiling. J Chromatogr A. 2017;1518:78–88.  https://doi.org/10.1016/j.chroma.2017.08.008.CrossRefPubMedGoogle Scholar
  201. 201.
    Muscat Galea C, Didion D, Clicq D, Mangelings D, Vander Heyden Y. Method optimization for drug impurity profiling in supercritical fluid chromatography: application to a pharmaceutical mixture. J Chromatogr A. 2017;1526:128–36.  https://doi.org/10.1016/j.chroma.2017.10.036.CrossRefPubMedGoogle Scholar
  202. 202.
    Tarafder A, Vajda P, Guiochon G. Accurate on-line mass flow measurements in supercritical fluid chromatography. J Chromatogr A. 2013;1320:130–7.  https://doi.org/10.1016/j.chroma.2013.10.041.CrossRefPubMedGoogle Scholar
  203. 203.
    Forss E, Haupt D, Stålberg O, Enmark M, Samuelsson J, Fornstedt T. Chemometric evaluation of the combined effect of temperature, pressure, and co-solvent fractions on the chiral separation of basic pharmaceuticals using actual vs set operational conditions. J Chromatogr A. 2017;1499:165–73.  https://doi.org/10.1016/j.chroma.2017.03.077.CrossRefPubMedGoogle Scholar
  204. 204.
    Åsberg D, Enmark M, Samuelsson J, Fornstedt T. Evaluation of co-solvent fraction, pressure and temperature effects in analytical and preparative supercritical fluid chromatography. J Chromatogr A. 2014;1374:254–60.  https://doi.org/10.1016/j.chroma.2014.11.045.CrossRefPubMedGoogle Scholar
  205. 205.
    Beres Martin J, Olesik Susan V. Enhanced-fluidity liquid chromatography using mixed-mode hydrophilic interaction liquid chromatography/strong cation-exchange retention mechanisms. J Sep Sci. 2015;38:3119–29.  https://doi.org/10.1002/jssc.201500454.CrossRefPubMedGoogle Scholar
  206. 206.
    Treadway JW, Philibert GS, Olesik SV. Enhanced fluidity liquid chromatography for hydrophilic interaction separation of nucleosides. J Chromatogr A. 2011;1218:5897–902.  https://doi.org/10.1016/j.chroma.2010.12.059.CrossRefPubMedGoogle Scholar
  207. 207.
    Taguchi K, Fukusaki E, Bamba T. Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography. J Chromatogr A. 2014;1362:270–7.  https://doi.org/10.1016/j.chroma.2014.08.003.CrossRefPubMedGoogle Scholar
  208. 208.
    Wolrab D, Frühauf P, Gerner C, Kohout M, Lindner W. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger. J Chromatogr A. 2017;1517:165–75.  https://doi.org/10.1016/j.chroma.2017.08.022.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICOAUniversity of Orleans, CNRS UMR 7311OrléansFrance

Personalised recommendations