Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6585–6594 | Cite as

HILIC/ESI-MS determination of gangliosides and other polar lipid classes in renal cell carcinoma and surrounding normal tissues

  • Roman Hájek
  • Miroslav Lísa
  • Maria Khalikova
  • Robert Jirásko
  • Eva Cífková
  • Vladimír ŠtudentJr
  • David Vrána
  • Lukáš Opálka
  • Kateřina Vávrová
  • Marcel Matzenauer
  • Bohuslav Melichar
  • Michal Holčapek
Research Paper

Abstract

Negative-ion hydrophilic liquid chromatography-electrospray ionization mass spectrometry (HILIC/ESI-MS) method has been optimized for the quantitative analysis of ganglioside (GM3) and other polar lipid classes, such as sulfohexosylceramides (SulfoHexCer), sulfodihexosylceramides (SulfoHex2Cer), phosphatidylglycerols (PG), phosphatidylinositols (PI), lysophosphatidylinositols (LPI), and phosphatidylserines (PS). The method is fully validated for the quantitation of the studied lipids in kidney normal and tumor tissues of renal cell carcinoma (RCC) patients based on the lipid class separation and the coelution of lipid class internal standard with the species from the same lipid class. The raw data are semi-automatically processed using our software LipidQuant and statistically evaluated using multivariate data analysis (MDA) methods, which allows the complete differentiation of both groups with 100% specificity and sensitivity. In total, 21 GM3, 28 SulfoHexCer, 26 SulfoHex2Cer, 10 PG, 19 PI, 4 LPI, and 7 PS are determined in the aqueous phase of lipidomic extracts from kidney tumor tissue samples and surrounding normal tissue samples of 20 RCC patients. S-plots allow the identification of most upregulated (PI 40:5, PI 40:4, GM3 34:1, and GM3 42:2) and most downregulated (PI 32:0, PI 34:0, PS 36:4, and LPI 16:0) lipids, which are primarily responsible for the differentiation of tumor and normal groups. Another confirmation of most dysregulated lipids is performed by the calculation of fold changes together with T and p values to highlight their statistical significance. The comparison of HILIC/ESI-MS data and matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) data confirms that lipid dysregulation patterns are similar for both methods.

Graphical abstract

Keywords

Lipids Lipidomics Gangliosides Mass spectrometry HILIC Renal cell carcinoma Tumor tissues 

Notes

Acknowledgments

The help of Assoc. Prof. Jozef Škarda with the histological staining is gratefully acknowledged.

Funding information

The present work was supported by ERC CZ project no. LL1302 sponsored by the Ministry of Education, Youth and Sports of the Czech Republic. K.V. and L.O. thank the support of grant project no. 16-25687J sponsored by the Czech Science Foundation.

Compliance with ethical standards

The study was approved by the hospital Ethical Committee, and patients signed informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1263_MOESM1_ESM.pdf (419 kb)
ESM 1 (PDF 418 kb)
216_2018_1263_MOESM2_ESM.xlsx (83 kb)
ESM 2 (XLSX 83 kb)

References

  1. 1.
    Lee JE, Spiegelman D, Hunter DJ, Albanes D, Bernstein L, Van Den Brandt PA, et al. Fat, protein, and meat consumption and renal cell cancer risk: a pooled analysis of 13 prospective studies. J Natl Cancer Inst. 2008;100(23):1695–706.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li P, Znaor A, Holcatova I, Fabianova E, Mates D, Wozniak MB, et al. Regional geographic variations in kidney cancer incidence rates in European countries. Eur Urol. 2015;67(6):1134–41.CrossRefPubMedGoogle Scholar
  3. 3.
    Bellocco R, Pasquali E, Rota M, Bagnardi V, Tramacere I, Scotti L, et al. Alcohol drinking and risk of renal cell carcinoma: results of a meta-analysis. Ann Oncol. 2012;23(9):2235–44.CrossRefPubMedGoogle Scholar
  4. 4.
    Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Petejova N, Martinek A. Renal cell carcinoma: review of etiology, pathophysiology and risk factors. Biomed Pap. 2016;160(2):183–94.CrossRefGoogle Scholar
  6. 6.
    Du Y, Dun Y, Qin C, Wang X, Xu T. Preoperative serum lipid profile is associated with the aggressiveness of renal cell carcinoma. Int J Clin Exp Pathol. 2016;9:9636–40.Google Scholar
  7. 7.
    Zhang C, Yu L, Xu T, Hao Y, Zhang X, Liu Z, et al. Association of dyslipidemia with renal cell carcinoma: a 1∶2 matched case-control study. PLoS One. 2013;8(3):e59796.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Buchler T, Bortlicek Z, Poprach A, Pavlik T, Veskrnova V, Honzirkova M, et al. Outcomes for patients with metastatic renal cell carcinoma achieving a complete response on targeted therapy: a registry-based analysis. Eur Urol. 2016;70(3):469–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Melichar B. Laboratory medicine and medical oncology: the tale of two Cinderellas. Clin Chem Lab Med. 2013;51(1):99–112.CrossRefPubMedGoogle Scholar
  11. 11.
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46(5):839–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Aureli M, Mauri L, Ciampa MG, Prinetti A, Toffano G, Secchieri C, et al. GM1 ganglioside: past studies and future potential. Mol Neurobiol. 2016;53(3):1824–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Hakomori S-I. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem. 1990;265(31):18713–6.PubMedGoogle Scholar
  14. 14.
    Sonnino S, Mauri L, Ciampa MG, Prinetti A. Gangliosides as regulators of cell signaling: ganglioside-protein interactions or ganglioside-driven membrane organization? J Neurochem. 2013;124(4):432–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Takahashi T, Suzuki T. Role of sulfatide in normal and pathological cells and tissues. J Lipid Res. 2012;53(8):1437–50.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Christie WW. http://lipidlibrary.aocs.org/. Accessed Jan 2018.
  17. 17.
    Angerer TB, Magnusson Y, Landberg G, Fletcher JS. Lipid heterogeneity resulting from fatty acid processing in the human breast cancer microenvironment identified by GCIB-ToF-SIMS imaging. Anal Chem. 2016;88(23):11946–54.CrossRefPubMedGoogle Scholar
  18. 18.
    Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogene. 2016;5(1):e189.CrossRefGoogle Scholar
  19. 19.
    Makhlouf A, Fathalla M, Zakhary M, Makarem M. Sulfatides in ovarian tumors: clinicopathological correlates. Int J Gynecol Cancer. 2004;14(1):89–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Guenther S, Muirhead LJ, Speller AV, Golf O, Strittmatter N, Ramakrishnan R, et al. Spatially resolved metabolic phenotyping of breast cancer by desorption electrospray ionization mass spectrometry. Cancer Res. 2015;75(9):1828–37.CrossRefPubMedGoogle Scholar
  21. 21.
    Marquina G, Waki H, Fernandez LE, Kon K, Carr A, Valiente O, et al. Gangliosides expressed in human breast cancer. Cancer Res. 1996;56(22):5165–71.PubMedGoogle Scholar
  22. 22.
    Yang L, Cui X, Zhang N, Li M, Bai Y, Han X, et al. Comprehensive lipid profiling of plasma in patients with benign breast tumor and breast cancer reveals novel biomarkers. Anal Bioanal Chem. 2015;407(17):5065–77.CrossRefPubMedGoogle Scholar
  23. 23.
    Dill AL, Eberlin LS, Zheng C, Costa AB, Ifa DR, Cheng L, et al. Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal Bioanal Chem. 2010;398(7):2969–78.CrossRefPubMedGoogle Scholar
  24. 24.
    Kirwan GM, Johansson E, Kleemann R, Verheij ER, Wheelock ÅM, Goto S, et al. Building multivariate systems biology models. Anal Chem. 2012;84(16):7064–71.CrossRefPubMedGoogle Scholar
  25. 25.
    Cífková E, Lísa M, Hrstka R, Vrána D, Gatěk J, Melichar B, et al. Correlation of lipidomic composition of cell lines and tissues of breast cancer patients using hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry and multivariate data analysis. Rapid Commun Mass Spectrom. 2017;31(3):253–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Cífková E, Holčapek M, Lísa M, Vrána D, Melichar B, Študent V. Lipidomic differentiation between human kidney tumors and surrounding normal tissues using HILIC-HPLC/ESI–MS and multivariate data analysis. J Chromatogr B. 2015;1000:14–21.CrossRefGoogle Scholar
  27. 27.
    Cífková E, Holčapek M, Lísa M, Vrána D, Gatěk J, Melichar B. Determination of lipidomic differences between human breast cancer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. Anal Bioanal Chem. 2015;407(3):991–1002.CrossRefGoogle Scholar
  28. 28.
    Folch J, Lees M, Sloane-Stanley G. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509.Google Scholar
  29. 29.
    Ovčačíková M, Lísa M, Cífková E, Holčapek M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A. 2016;1450:76–85.CrossRefPubMedGoogle Scholar
  30. 30.
    Hájek R, Jirásko R, Lísa M, Cífková E, Holčapek M. Hydrophilic interaction liquid chromatography–mass spectrometry characterization of gangliosides in biological samples. Anal Chem. 2017;89(22):12425–32.CrossRefPubMedGoogle Scholar
  31. 31.
    Jirásko R, Holčapek M, Kuneš M, Svatoš A. Distribution study of atorvastatin and its metabolites in rat tissues using combined information from UHPLC/MS and MALDI-Orbitrap-MS imaging. Anal Bioanal Chem. 2014;406(19):4601–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Guideline on bioanalytical method validation. Committee for Medicinal Products for Human Use (CHMP). First published August 2011, last updated June 2015. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/document_detail.jsp?webContentId=WC500109686%26mid=WC0b01ac058009a3dc.
  33. 33.
    FDA guidance for industry: bioanalytical method validation. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research: Rockville, MD. 2001. https://www.fda.gov/ForIndustry/IndustryNoticesandGuidanceDocuments/default.htm.
  34. 34.
    Izumi M, Shen G-J, Wacowich-Sgarbi S, Nakatani T, Plettenburg O, Wong C-H. Microbial glycosyltransferases for carbohydrate synthesis: α-2, 3-sialyltransferase from Neisseria gonorrheae. J Am Chem Soc. 2001;123(44):10909–18.CrossRefPubMedGoogle Scholar
  35. 35.
    Jirásko R, Holčapek M, Khalikova M, Vrána D, Študent V, Prouzová Z, et al. MALDI Orbitrap mass spectrometry profiling of dysregulated sulfoglycosphingolipids in renal cell carcinoma tissues. J Am Soc Mass Spectrom. 2017;28(8):1562–74.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Roman Hájek
    • 1
  • Miroslav Lísa
    • 1
  • Maria Khalikova
    • 1
  • Robert Jirásko
    • 1
  • Eva Cífková
    • 1
  • Vladimír ŠtudentJr
    • 2
  • David Vrána
    • 3
  • Lukáš Opálka
    • 4
  • Kateřina Vávrová
    • 4
  • Marcel Matzenauer
    • 3
  • Bohuslav Melichar
    • 3
  • Michal Holčapek
    • 1
  1. 1.Faculty of Chemical Technology, Department of Analytical ChemistryUniversity of PardubicePardubiceCzech Republic
  2. 2.Department of Urology, Faculty of Medicine and DentistryPalacký University and University HospitalOlomoucCzech Republic
  3. 3.Department of Oncology, Faculty of Medicine and DentistryPalacký University and University HospitalOlomoucCzech Republic
  4. 4.Faculty of Pharmacy Hradec Králové, Department of Organic and Bioorganic ChemistryCharles UniversityHradec KrálovéCzech Republic

Personalised recommendations