Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6411–6440 | Cite as

Non-volatile compounds in exhaled breath condensate: review of methodological aspects

  • Elaheh Rahimpour
  • Maryam Khoubnasabjafari
  • Vahid Jouyban-Gharamaleki
  • Abolghasem Jouyban
Review

Abstract

In contrast to bronchial and nasal lavages, the analysis of exhaled breath condensate (EBC) is a promising, simple, non-invasive, repeatable, and diagnostic method for studying the composition of airway lining fluid with the potential to assess lung inflammation, exacerbations, and disease severity, and to monitor the effectiveness of treatment regimens. Recent investigations have revealed the potential applications of EBC analysis in systemic diseases. In this review, we highlight the analytical studies conducted on non-volatile compounds/biomarkers in EBC. In contrast to other related articles, this review is classified on the basis of analytical techniques and includes almost all the applied methods and their methodological limitations for quantification of non-volatile compounds in EBC samples, providing a guideline for further researches. The studies were identified by searching the SCOPUS database with the keywords “biomarkers,” “non-volatile compounds,” “determination method,” and “EBC.”

Keywords

Exhaled breath condensate Non-volatile compounds Biomarkers Analytical methods 

Notes

Acknowledgments

The authors would like to thank Dr. Ali Shayanfar for his assistance in this study.

Patent

Jouyban A, Khoubnasabjafari M, Ansarin K, Jouyban-Gharamaleki V. Breath sampling setup. Iranian Patent, 81363, 2013.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yates DH, Krishnan A, Chow S, Thomas PS. Non-invasive assessment of exhaled biomarkers in lung transplantation. J. Breath Res. 2011;5:024001.CrossRefGoogle Scholar
  2. 2.
    Hunt J. Exhaled breath condensate: an evolving tool for noninvasive evaluation of lung disease. J Allergy Clin Immunol. 2002;110:28–34.CrossRefGoogle Scholar
  3. 3.
    Chow S, Yates DH, Thomas PS. Reproducibility of exhaled breath condensate markers. Eur Respir J. 2008;32:1124–6.  https://doi.org/10.1183/09031936.00085408.CrossRefPubMedGoogle Scholar
  4. 4.
    de Paiva MJN, Menezes HC, de Lourdes Cardeal Z. Sampling and analysis of metabolomes in biological fluids. Analyst. 2014;139:3683–94.  https://doi.org/10.1039/C4AN00583J.CrossRefGoogle Scholar
  5. 5.
    Effros RM, Biller J, Foss B, Hoagland K, Dunning MB, Castillo D, et al. A simple method for estimating respiratory solute dilution in exhaled breath condensates. Am J Respir Crit Care Med. 2003;168:1500–5.  https://doi.org/10.1164/rccm.200307-920OC.CrossRefPubMedGoogle Scholar
  6. 6.
    Johnson GR, Morawska L. The mechanism of breath aerosol formation. J Aerosol Med Pulm Drug Deliv. 2009;22:229–37.  https://doi.org/10.1089/jamp.2008.0720.CrossRefGoogle Scholar
  7. 7.
    Hunt J. Exhaled breath condensate: an overview. Immunol Allergy Clin. 2007;27:587–96.  https://doi.org/10.1016/j.iac.2007.09.001.CrossRefGoogle Scholar
  8. 8.
    Mutlu GM, Garey KW, Robbins RA, Danziger LH, Rubinstein I. Collection and analysis of exhaled breath condensate in humans. Am J Respir Crit Care Med. 2001;164:731–7.CrossRefGoogle Scholar
  9. 9.
    Sepehr B, Bavili-Tabrizi A, Jouyban-Gharamaleki V, Khoubnasabjafari M, Jouyban A. A sensitive determination of ammonia and nitrite in exhaled breath condensate of healthy humans by using berthelot reaction. Curr Pharm Analysis. 2017;13 In press.Google Scholar
  10. 10.
    Khoubnasabjafari M, Jouyban A, Ansarin K, Jouyban-Gharamaleki V, Panahi-Azar V, Hamidi S, et al. Methadone concentrations in exhaled breath condensate, serum and urine of patients under maintenance treatment. Iran J Pharm Res. 2017;16:1621–30.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Khoubnasabjafari M, Ansarin K, Jouyban-Gharamaleki V, Panahi-Azar V, Shayanfar A, Mohammadzadeh L, et al. Extraction and analysis of methadone in exhaled breath condensate using a validated LC-UV method. J Pharm Pharm Sci. 2015;18:207–19.  https://doi.org/10.18433/J3WK65.CrossRefPubMedGoogle Scholar
  12. 12.
    Jouyban A, Samadi A, Khoubnasabjafari M, Jouyban-Gharamaleki V, Ranjbar F. Amidosulfonic acid-capped silver nanoparticles for the spectrophotometric determination of lamotrigine in exhaled breath condensate. Microchim Acta. 2017;184:2991–8.  https://doi.org/10.1007/s00604-017-2325-x.CrossRefGoogle Scholar
  13. 13.
    Mohamadian E, Shayanfar A, Khoubnasabjafari M, Jouyban-Gharamaleki V, Ghaffary S, Jouyban A. Analysis of deferiprone in exhaled breath condensate using silver nanoparticle-enhanced terbium fluorescence. Anal Methods. 2017;9:5640–5.CrossRefGoogle Scholar
  14. 14.
    Hamidi S, Khoubnasabjafari M, Ansarin K, Jouyban-Gharamaleki V, Jouyban A. Direct analysis of methadone in exhaled breath condensate by capillary zone electrophoresis. Curr Pharm Anal. 2016;12:137–45.CrossRefGoogle Scholar
  15. 15.
    Hamidi S, Khoubnasabjafari M, Ansarin K, Jouyban-Gharamaleki V, Jouyban A. Chiral separation of methadone in exhaled breath condensate using capillary electrophoresis. Anal Methods. 2017;9:2342–50.  https://doi.org/10.1039/c7ay00110j.CrossRefGoogle Scholar
  16. 16.
    Kubáň P, Foret F. Exhaled breath condensate: determination of non-volatile compounds and their potential for clinical diagnosis and monitoring: a review. Anal Chim Acta. 2013;805:1–18.  https://doi.org/10.1016/j.aca.2013.07.049.CrossRefPubMedGoogle Scholar
  17. 17.
    Fumagalli M, Dolcini L, Sala A, Stolk J, Fregonese L, Ferrari F, et al. Proteomic analysis of exhaled breath condensate from single patients with pulmonary emphysema associated to α1-antitrypsin deficiency. J Proteome. 2008;71:211–21.  https://doi.org/10.1016/j.jprot.2008.03.002.CrossRefGoogle Scholar
  18. 18.
    Rosso MI, Roark S, Taylor E, Ping X, Ward JM, Roche K, et al. Exhaled breath condensate in intubated neonates-a window into the lung’s glutathione status. Respir Res. 2014;15:1.  https://doi.org/10.1186/1465-9921-15-1.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Van Beurden W, Harff G, Dekhuijzen P, Van Den Bosch M, Creemers J, Smeenk F. An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate. Respir Med. 2002;96:197–203.  https://doi.org/10.1053/rmed.2001.1240.CrossRefPubMedGoogle Scholar
  20. 20.
    Rosias PP, Dompeling E, Hendriks HJ, Heijnens JW, Donckerwolcke R, Jöbsis Q. Exhaled breath condensate in children: pearls and pitfalls. Pediatr Allergy Immunol. 2004;15:4–19.  https://doi.org/10.1046/j.0905-6157.2003.00091.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Frey U, Merkus P. European respiratory monograph: Paediatric lung function. Plymouth: European Respiratory Society; 2010.CrossRefGoogle Scholar
  22. 22.
    Jouyban A, Khoubnasabjafari M, Ansarin K, Jouyban-Gharamaleki V. Breath sampling setup. Iranian Patent, 2013;81363.Google Scholar
  23. 23.
    Ahmadzai H, Huang S, Hettiarachchi R, Lin JL, Thomas PS, Zhang Q. Exhaled breath condensate: a comprehensive update. Clin Chem Lab Med. 2013;51:1343–61.  https://doi.org/10.1515/cclm-2012-0593.CrossRefPubMedGoogle Scholar
  24. 24.
    Tufvesson E, Bjermer L. Methodological improvements for measuring eicosanoids and cytokines in exhaled breath condensate. Respir Med. 2006;100:34–8.  https://doi.org/10.1016/j.rmed.2005.04.007.CrossRefPubMedGoogle Scholar
  25. 25.
    Anaev EK, Apyari VV, Puganova EA, Borisova AV, Dmitriyenko SG, Karyakina EE, et al. Pulmonary oxidative status in norma and pathologies on the basis of analysis of exhaled breath condensate. Am J Biomed Sci. 2010;2:365–72.CrossRefGoogle Scholar
  26. 26.
    Cunningham S, McColm JR, Ho LP, Greening AP, Marshall TG. Measurement of inflammatory markers in the breath condensate of children with cystic fibrosis. Eur Respir J. 2000;15:955–7.  https://doi.org/10.1034/j.1399-3003.2000.15e24.x.CrossRefPubMedGoogle Scholar
  27. 27.
    Hunt J, Byrns R, Ignarro L, Gaston B. Condensed expirate nitrite as a home marker for acute asthma. Lancet. 1995;346:1235–6.  https://doi.org/10.1016/S0140-6736(95)92947-9.CrossRefPubMedGoogle Scholar
  28. 28.
    Formanek W, Inci D, Lauener RP, Wildhaber JH, Frey U, Hall GL. Elevated nitrite in breath condensates of children with respiratory disease. Eur Respir J. 2002;19:487–91.  https://doi.org/10.1183/09031936.02.00101202.CrossRefPubMedGoogle Scholar
  29. 29.
    Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992;298:431–7.  https://doi.org/10.1016/0003-9861(92)90431-U.CrossRefPubMedGoogle Scholar
  30. 30.
    Van Der Vliet A, Nguyen MN, Shigenaga MK, Eiserich JP, Marelich GP, Cross CE. Myeloperoxidase and protein oxidation in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2000;279:L537–56.CrossRefGoogle Scholar
  31. 31.
    Andreadis AA, Hazen SL, Comhair SAA, Erzurum SC. Oxidative and nitrosative events in asthma. Free Radic Biol Med. 2003;35:213–25.  https://doi.org/10.1016/S0891-5849(03)00278-8.CrossRefPubMedGoogle Scholar
  32. 32.
    Baraldi E, Giordano G, Pasquale M, Carraro S, Mardegan A, Bonetto G, et al. 3-Nitrotyrosine, a marker of nitrosative stress, is increased in breath condensate of allergic asthmatic children. Allergy. 2006;61:90–6.  https://doi.org/10.1111/j.1398-9995.2006.00996.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Göen T, Müller-Lux A, Dewes P, Musiol A, Kraus T. Sensitive and accurate analyses of free 3-nitrotyrosine in exhaled breath condensate by LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2005;826:261–6.  https://doi.org/10.1016/j.jchromb.2005.08.001.CrossRefGoogle Scholar
  34. 34.
    Lärstad M, Söderling AS, Caidahl K, Olin AC. Selective quantification of free 3-nitrotyrosine in exhaled breath condensate in asthma using gas chromatography/tandem mass spectrometry. Nitric Oxide. 2005;13:134–44.  https://doi.org/10.1016/j.niox.2005.05.009.CrossRefPubMedGoogle Scholar
  35. 35.
    Bodini A, Peroni DG, Zardini F, Corradi M, Alinovi R, Boner AL, et al. Flunisolide decreases exhaled nitric oxide and nitrotyrosine levels in asthmatic children. Mediat Inflamm. 2006:31919.  https://doi.org/10.1155/MI/2006/31919.CrossRefGoogle Scholar
  36. 36.
    Celio S, Troxler H, Durka SS, Chládek J, Wildhaber JH, Sennhauser FH, et al. Free 3-nitrotyrosine in exhaled breath condensates of children fails as a marker for oxidative stress in stable cystic fibrosis and asthma. Nitric Oxide. 2006;15:226–32.  https://doi.org/10.1016/j.niox.2006.06.008.CrossRefPubMedGoogle Scholar
  37. 37.
    Mathews WR, Kerr SW. Biological activity of S-nitrosothiols: the role of nitric oxide. J Pharmacol Exp Ther. 1993;267:1529–37.PubMedGoogle Scholar
  38. 38.
    Csoma Z, Bush A, Wilson NM, Donnelly L, Balint B, Barnes PJ, et al. Nitric oxide metabolites are not reduced in exhaled breath condensate of patients with primary ciliary dyskinesia. Chest J. 2003;124:633–8.CrossRefGoogle Scholar
  39. 39.
    Samuelsson B, Granstrom E, Green K, Hamberg M, Hammarstrom S. Prostaglandins. Annu Rev Biochem. 1975;44:669–95.CrossRefGoogle Scholar
  40. 40.
    Smyth EM, Grosser T, Wang M, Yu Y, FitzGerald GA. Prostanoids in health and disease. J Lipid Res. 2009;50:S423–8.  https://doi.org/10.1194/jlr.R800094-JLR200.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Roberts LJ, Milne GL. Isoprostanes. J Lipid Res. 2009;50:S21923.  https://doi.org/10.1194/jlr.R800037-JLR200.CrossRefGoogle Scholar
  42. 42.
    Antczak A, Montuschi P, Kharitonov S, Gorski P, Barnes PJ. Increased exhaled cysteinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am J Respir Crit Care Med. 2002;166:301–6.  https://doi.org/10.1164/rccm.2101021.CrossRefPubMedGoogle Scholar
  43. 43.
    Janssen LJ. Isoprostanes: an overview and putative roles in pulmonary pathophysiology. Am J Physiol Lung Cell Mol Physiol. 2001;280:L1067–82.CrossRefGoogle Scholar
  44. 44.
    Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA, et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med. 2000;162:1175–7.  https://doi.org/10.1164/ajrccm.162.3.2001063.CrossRefPubMedGoogle Scholar
  45. 45.
    Wardlaw A, Hay H, Cromwell O, Collins J, Kay A. Leukotrienes, LTC 4 and LTB 4, in bronchoalveolar lavage in bronchial asthma and other respiratory diseases. J Allergy Clin Immunol. 1989;84:19–26.  https://doi.org/10.1016/0091-6749(89)90173-5.CrossRefPubMedGoogle Scholar
  46. 46.
    Ford-Hutchinson A, Bray M, Doig MV, Shipley M, Smith M. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature. 1980;286:264–5.  https://doi.org/10.1038/286264a0.CrossRefPubMedGoogle Scholar
  47. 47.
    Hanazawa T, Kharitonov SA, Barnes PJ. Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am J Respir Crit Care Med. 2000;162:1273–6.  https://doi.org/10.1164/ajrccm.162.4.9912064.CrossRefPubMedGoogle Scholar
  48. 48.
    Montuschi P. LC/MS/MS analysis of leukotriene B 4 and other eicosanoids in exhaled breath condensate for assessing lung inflammation. J Chromatogr B. 2009;877:1272–80.  https://doi.org/10.1016/j.jchromb.2009.01.036.CrossRefGoogle Scholar
  49. 49.
    Čáp P, Chládek J, Pehal F, Malý M, Petrů V, Barnes PJ, et al. Gas chromatography/mass spectrometry analysis of exhaled leukotrienes in asthmatic patients. Thorax. 2004;59:465–70.  https://doi.org/10.1136/thx.2003.011866.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Laberge S, El Bassam S. Cytokines, structural cells of the lungs and airway inflammation. Paediatr Respir Rev. 2004;5:S41–5.  https://doi.org/10.1016/S1526-0542(04)90009-7.CrossRefPubMedGoogle Scholar
  51. 51.
    Dinarello CA. Proinflammatory cytokines. Chest J. 2000;118:503–8.CrossRefGoogle Scholar
  52. 52.
    Atamas SP, Chapoval SP, Keegan AD. Cytokines in chronic respiratory diseases. F1000 Biol Rep. 2013;5:3564216.  https://doi.org/10.3410/B5-3.CrossRefGoogle Scholar
  53. 53.
    Matés JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000;153:83–104.  https://doi.org/10.1016/S0300-483X(00)00306-1.CrossRefPubMedGoogle Scholar
  54. 54.
    Corradi M, Folesani G, Andreoli R, Manini P, Bodini A, Piacentini G, et al. Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. Am J Respir Crit Care Med. 2003;167:395–9.  https://doi.org/10.1164/rccm.200206-507OC.CrossRefPubMedGoogle Scholar
  55. 55.
    Idzko M, Panther E, Bremer HC, Sorichter S, Luttmann W, Virchow CJ, et al. Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. Br J Pharmacol. 2003;138:1244–50.  https://doi.org/10.1038/sj.bjp.0705145.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lázár Z, Huszár É, Kullmann T, Barta I, Antus B, Bikov A, et al. Adenosine triphosphate in exhaled breath condensate of healthy subjects and patients with chronic obstructive pulmonary disease. Inflamm Res. 2008;57:367–73.  https://doi.org/10.1007/s00011-008-8009-6.CrossRefPubMedGoogle Scholar
  57. 57.
    King NE, Rothenberg ME, Zimmermann N. Arginine in asthma and lung inflammation. J Nutr. 2004;134:2830S–6.CrossRefGoogle Scholar
  58. 58.
    Di Gangi IM, Pirillo P, Carraro S, Gucciardi A, Naturale M, Baraldi E, et al. Online trapping and enrichment ultra performance liquid chromatography-tandem mass spectrometry method for sensitive measurement of "arginine-asymmetric dimethylarginine cycle" biomarkers in human exhaled breath condensate. Anal Chim Acta. 2012;754:67–74.  https://doi.org/10.1016/j.aca.2012.09.032.CrossRefPubMedGoogle Scholar
  59. 59.
    Ullah S, Sandqvist S, Beck O. Measurement of lung phosphatidylcholines in exhaled breath particles by a convenient collection procedure. Anal Chem. 2015;87:11553–60.  https://doi.org/10.1021/acs.analchem.5b03433.CrossRefPubMedGoogle Scholar
  60. 60.
    Calkovska A, Uhliarova B, Joskova M, Franova S, Kolomaznik M, Calkovsky V, et al. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle. Respir Physiol Neurobiol. 2015;209:95–105.  https://doi.org/10.1016/j.resp.2015.01.004.CrossRefPubMedGoogle Scholar
  61. 61.
    Hohlfeld JM. The role of surfactant in asthma. Respir Res. 2001;3:4.  https://doi.org/10.1186/rr176.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Horváth I, Hunt J, Barnes PJ. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J. 2005;26:523–48.  https://doi.org/10.1183/09031936.05.00029705.CrossRefPubMedGoogle Scholar
  63. 63.
    Bardhan KD, Strugala V, Dettmar PW. Reflux revisited: advancing the role of pepsin. Int J Otolaryngol. 2011:646901.  https://doi.org/10.1155/2012/646901.CrossRefGoogle Scholar
  64. 64.
    Zhang X, Zou Y, An C, Ying K, Chen X, Wang P. Sensitive detection of carcinoembryonic antigen in exhaled breath condensate using surface acoustic wave immunosensor. Sensors Actuators B Chem. 2015;217:100–6.  https://doi.org/10.1016/j.snb.2014.10.139.CrossRefGoogle Scholar
  65. 65.
    Grunnet M, Sorensen J. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer. 2012;76:138–43.  https://doi.org/10.1016/j.lungcan.2011.11.012.CrossRefPubMedGoogle Scholar
  66. 66.
    Zou Y, Wang L, Zhao C, Hu Y, Xu S, Ying K, et al. CEA, SCC and NSE levels in exhaled breath condensate—possible markers for early detection of lung cancer. J Breath Res. 2013;7:047101.  https://doi.org/10.1088/1752-7155/7/4/047101.CrossRefPubMedGoogle Scholar
  67. 67.
    Gonzalez-Reche LM, Kucharczyk A, Musiol AK, Kraus T. Determination of Nε-(carboxymethyl) lysine in exhaled breath condensate using isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:2747–52.  https://doi.org/10.1002/rcm.2643.CrossRefPubMedGoogle Scholar
  68. 68.
    Matsuse T, Ohga E, Teramoto S, Fukayama M, Nagai R, Horiuchi S, et al. Immunohistochemical localisation of advanced glycation end products in pulmonary fibrosis. J Clin Pathol. 1998;51:515–9.  https://doi.org/10.1136/jcp.51.7.515.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bain MA, Faull R, Fornasini G, Milne RW, Evans AM. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant. 2006;21:1300–4.  https://doi.org/10.1093/ndt/gfk056.CrossRefPubMedGoogle Scholar
  70. 70.
    Beauchamp J. Inhaled today, not gone tomorrow: pharmacokinetics and environmental exposure of volatiles in exhaled breath. J Breath Res. 2011;5  https://doi.org/10.1088/1752-7155/5/3/037103.CrossRefGoogle Scholar
  71. 71.
    Berchtold C, Bosilkovska M, Daali Y, Walder B, Zenobi R. Real-time monitoring of exhaled drugs by mass spectrometry. Mass Spectrom Rev. 2014;33:394–413.  https://doi.org/10.1002/mas.21393.CrossRefPubMedGoogle Scholar
  72. 72.
    Di Francesco F, Fuoco R, Trivella MG, Ceccarini A. Breath analysis: trends in techniques and clinical applications. Microchem J. 2005;79:405–10.  https://doi.org/10.1016/j.microc.2004.10.008.CrossRefGoogle Scholar
  73. 73.
    Grob NM, Aytekin M, Dweik RA. Biomarkers in exhaled breath condensate: a review of collection, processing and analysis. J Breath Res. 2008;2:037004.  https://doi.org/10.1088/1752-7155/2/3/037004.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chambers ST, Scott-Thomas A, Epton M. Developments in novel breath tests for bacterial and fungal pulmonary infection. Curr Opin Pulm Med. 2012;18:228–32.  https://doi.org/10.1097/MCP.0b013e328351f98b.CrossRefPubMedGoogle Scholar
  75. 75.
    Malakasioti G, Alexopoulos E, Befani C, Tanou K, Varlami V, Ziogas D, et al. Oxidative stress and inflammatory markers in the exhaled breath condensate of children with OSA. Sleep and Breathing. 2012;16:703–8.  https://doi.org/10.1007/s11325-011-0560-7.CrossRefPubMedGoogle Scholar
  76. 76.
    Stefanska J, Sarniak A, Wlodarczyk A, Sokolowska M, Pniewska E, Doniec Z, et al. Apocynin reduces reactive oxygen species concentrations in exhaled breath condensate in asthmatics. Exp Lung Res. 2012;38:90–9.  https://doi.org/10.3109/01902148.2011.649823.CrossRefPubMedGoogle Scholar
  77. 77.
    Stefanska J, Sarniak A, Wlodarczyk A, Sokolowska M, Doniec Z, Bialasiewicz P, et al. Hydrogen peroxide and nitrite reduction in exhaled breath condensate of COPD patients. Pulm Pharmacol Ther. 2012;25:343–8.  https://doi.org/10.1016/j.pupt.2012.06.001.CrossRefPubMedGoogle Scholar
  78. 78.
    Snchez-Vidaurre S, Cruz MJ, Gmez-Olls S, Morell F, Muoz X. Diagnostic utility of exhaled breath condensate analysis in conjunction with specific inhalation challenge in individuals with suspected work-related asthma. Ann Allergy Asthma Immunol. 2012;108:151–6.  https://doi.org/10.1016/j.anai.2011.12.010.CrossRefGoogle Scholar
  79. 79.
    Lee JS, Shin JH, Hwang JH, Baek JE, Choi BS. Malondialdehyde and 3-nitrotyrosine in exhaled breath condensate in retired elderly coal miners with chronic obstructive pulmonary disease. Safety and Health at Work. 2014;5:91–6.  https://doi.org/10.1016/j.shaw.2014.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Yildirim Z, Bozkurt B, Ozol D, Armutcu F, Akgedik R, Karamanli H, et al. Increased exhaled 8-isoprostane and interleukin-6 in patients with helicobacter pylori infection. Helicobacter. 2016;21:389–94.  https://doi.org/10.1111/hel.12302.CrossRefPubMedGoogle Scholar
  81. 81.
    Corradi M, Montuschi P, Donnelly LE, Pesci A, Kharitonov SA, Barnes PJ. Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. Am J Respir Crit Care Med. 2001;163:854–8.  https://doi.org/10.1164/ajrccm.163.4.2001108.CrossRefPubMedGoogle Scholar
  82. 82.
    Makris D, Paraskakis E, Korakas P, Karagiannakis E, Sourvinos G, Siafakas NM, et al. Exhaled breath condensate 8-isoprostane, clinical parameters, radiological indices and airway inflammation in COPD. Respiration. 2008;75:138–44.  https://doi.org/10.1159/000106377.CrossRefPubMedGoogle Scholar
  83. 83.
    Ko FWS, Lau CYK, Leung TF, Wong GWK, Lam CWK, Hui DSC. Exhaled breath condensate levels of 8-isoprostane, growth related oncogene α and monocyte chemoattractant protein-1 in patients with chronic obstructive pulmonary disease. Respir Med. 2006;100:630–8.  https://doi.org/10.1016/j.rmed.2005.08.009.CrossRefPubMedGoogle Scholar
  84. 84.
    Trischler J, Müller CM, Könitzer S, Prell E, Korten I, Unverzagt S, et al. Elevated exhaled leukotriene B4; in the small airway compartment in children with asthma. Ann Allergy Asthma Immunol. 2015;114:111–6.  https://doi.org/10.1016/j.anai.2014.11.022.CrossRefPubMedGoogle Scholar
  85. 85.
    Kazani S, Planaguma A, Ono E, Bonini M, Zahid M, Marigowda G, et al. Exhaled breath condensate eicosanoid levels associate with asthma and its severity. J Allergy Clin Immunol. 2013;132:547–53.  https://doi.org/10.1016/j.jaci.2013.01.058.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Peroni DG, Bodini A, Corradi M, Coghi A, Boner AL, Piacentini GL. Markers of oxidative stress are increased in exhaled breath condensates of children with atopic dermatitis. Br J Dermatol. 2012;166:839–43.  https://doi.org/10.1111/j.1365-2133.2011.10771.x.CrossRefPubMedGoogle Scholar
  87. 87.
    Csoma Z, Kharitonov SA, Balint B, Bush A, Wilson NM, Barnes PJ. Increased leukotrienes in exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med. 2002;166:1345–9.  https://doi.org/10.1164/rccm.200203-233OC.CrossRefPubMedGoogle Scholar
  88. 88.
    Dong X, Shen Q, Yao Y, Chen J, Lu G, Zhou J. Determination of biomarkers in exhaled breath condensation of acute exacerbation of chronic obstructive pulmonary disease and its clinical implications. Chin J Tuberculosis Respir Dis. 2017;40:114–7.  https://doi.org/10.3760/cma.j.issn.1001-0939.2017.02.007.CrossRefGoogle Scholar
  89. 89.
    Montuschi P, Barnes PJ. Exhaled leukotrienes and prostaglandins in asthma. J Allergy Clin Immunol. 2002;109:615–20.  https://doi.org/10.1067/mai.2002.122461.CrossRefPubMedGoogle Scholar
  90. 90.
    Ciebiada M, Górski P, Antczak A. Eicosanoids in exhaled breath condensate and bronchoalveolar lavage fluid of patients with primary lung cancer. Dis Markers. 2012;32:329–35.  https://doi.org/10.3233/DMA-2011-0890.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Grzela K, Zagorska W, Krejner A, Litwiniuk M, Zawadzka-Krajewska A, Banaszkiewicz A, et al. Prolonged treatment with inhaled corticosteroids does not normalize high activity of matrix metalloproteinase-9 in exhaled breath condensates of children with asthma. Arch Immunol Ther Exp. 2015;63:231–7.  https://doi.org/10.1007/s00005-015-0328-z.CrossRefGoogle Scholar
  92. 92.
    Krenke K, Peradzyńska J, Lange J, Banaszkiewicz A, Łazowska-Przeorek I, Grzela K, et al. Inflammatory cytokines in exhaled breath condensate in children with inflammatory bowel diseases. Pediatr Pulmonol. 2014;49:1190–5.  https://doi.org/10.1002/ppul.22953.CrossRefPubMedGoogle Scholar
  93. 93.
    Ono E, Mita H, Taniguchi M, Higashi N, Tsuburai T, Miyazaki E, et al. Comparison of cysteinyl leukotriene concentrations between exhaled breath condensate and bronchoalveolar lavage fluid. Clin Exp Allergy. 2008;38:1866–74.  https://doi.org/10.1111/j.1365-2222.2008.03108.x.CrossRefPubMedGoogle Scholar
  94. 94.
    Chan E, Sivagnanam T, Zhang Q, Lewis CR, Thomas PS. Tumour necrosis factor alpha and oxidative stress in the breath condensate of those with non-small cell lung cancer. J Cancer Ther. 2012;3:460–6.  https://doi.org/10.4236/jct.2012.324059.CrossRefGoogle Scholar
  95. 95.
    Aliberti S, Morlacchi LC, Faverio P, Fernandez-Botran R, Cosentini R, Mantero M, et al. Serum and exhaled breath condensate inflammatory cytokines in community-acquired pneumonia: a prospective cohort study. Pneumonia. 2016;8:8.  https://doi.org/10.1186/s41479-016-0009-7.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Seifi M, Rastkari N, Hassanvand M, Arfaeinia H, Younesian M. Determination of biomarker IL-6 in exhaled breath condensate using exhaled breath condensate collector. Iran J Health Environ. 2017;10:15–24.Google Scholar
  97. 97.
    Heinicke I, Boehler A, Rechsteiner T, Bogdanova A, Jelkmann W, Hofer M, et al. Moderate altitude but not additional endurance training increases markers of oxidative stress in exhaled breath condensate. Eur J Appl Physiol. 2009;106:599–604.  https://doi.org/10.1007/s00421-009-1014-9.CrossRefPubMedGoogle Scholar
  98. 98.
    Huszár É, Szabó Z, Jakab Á, Barta I, Herjavecz I, Horváth I. Comparative measurement of thromboxane A2 metabolites in exhaled breath condensate by different immunoassays. Inflamm Res. 2005;54:350–5.  https://doi.org/10.1007/s00011-005-1361-x.CrossRefPubMedGoogle Scholar
  99. 99.
    Chen J, Chen J, Lv X, Ma H. Clinical significance of TGF-β1 in exhaled breath condensate and serum from patients with non-small cell lung cancer. Int J Clin Exp Pathol. 2017;10:5895–900.Google Scholar
  100. 100.
    Jackson AS, Sandrini A, Campbell C, Chow S, Thomas PS, D. Yates H. Comparison of biomarkers in exhaled breath condensate and bronchoalveolar lavage. Am J Respir Crit Care Med. 2007;175:222–7.  https://doi.org/10.1164/rccm.200601-107OC.CrossRefPubMedGoogle Scholar
  101. 101.
    Timms C, Thomas PS, Yates DH. Detection of gastro-oesophageal reflux disease (GORD) in patients with obstructive lung disease using exhaled breath profiling. J Breath Res. 2012;6:016003.CrossRefGoogle Scholar
  102. 102.
    Soyer T, Soyer ÖU, Birben E, Kisa Ü, Kalayci Ö, Çakmak M. Pepsin levels and oxidative stress markers in exhaled breath condensate of patients with gastroesophageal reflux disease. J Pediatr Surg. 2013;48:2247–50.  https://doi.org/10.1016/j.jpedsurg.2013.02.100.CrossRefPubMedGoogle Scholar
  103. 103.
    Chladkova J, Krcmova I, Chladek J, Cap P, Micuda S, Hanzalkova Y. Validation of nitrite and nitrate measurements in exhaled breath condensate. Respiration. 2006;73:173–9.  https://doi.org/10.1159/000088050.CrossRefPubMedGoogle Scholar
  104. 104.
    Gessner C, Scheibe R, Wötzel M, Hammerschmidt S, Kuhn H, Engelmann L, et al. Exhaled breath condensate cytokine patterns in chronic obstructive pulmonary disease. Respir Med. 2005;99:1229–40.  https://doi.org/10.1016/j.rmed.2005.02.041.CrossRefPubMedGoogle Scholar
  105. 105.
    Sack U, Scheibe R, Wötzel M, Hammerschmidt S, Kuhn H, Emmrich F, et al. Multiplex analysis of cytokines in exhaled breath condensate. Cytometry A. 2006;69:169–72.  https://doi.org/10.1002/cyto.a.20231.CrossRefPubMedGoogle Scholar
  106. 106.
    Rosias PP, Robroeks CM, Van De Kant KD, Rijkers GT, Zimmermann LJ, Van Schayck CP, et al. Feasibility of a new method to collect exhaled breath condensate in pre-school children. Pediatr Allergy Immunol. 2010;21:e235–44.  https://doi.org/10.1111/j.1399-3038.2009.00909.x.CrossRefPubMedGoogle Scholar
  107. 107.
    Schumann C, Triantafilou K, Krueger S, Hombach V, Triantafilou M, Becher G, et al. Detection of erythropoietin in exhaled breath condensate of nonhypoxic subjects using a multiplex bead array. Mediators Inflamm. 2006:18061.  https://doi.org/10.1155/MI/2006/18061.CrossRefGoogle Scholar
  108. 108.
    Pasha MA, Smith TC, Feustel PJ, Jourd’heuil D. Effects of low-dose fluticasone propionate/salmeterol combination therapy on exhaled nitric oxide and nitrite/nitrate in breath condensates from patients with mild persistent asthma. J Asthma. 2013;50:64–70.  https://doi.org/10.3109/02770903.2012.733467.CrossRefPubMedGoogle Scholar
  109. 109.
    Hussain S, Laumbach R, Coleman J, Youssef H, Kelly-Mcneil K, Ohman-Strickland P, et al. Controlled exposure to diesel exhaust causes increased nitrite in exhaled breath condensate among subjects with asthma. J Occup Environ Med. 2012;54:1186–91.  https://doi.org/10.1097/JOM.0b013e31826bb64c.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Arcêncio L, Vento DA, Bassetto S, Évora PR, Rodrigues AJ. Exhaled nitrite/nitrate levels as a marker of respiratory complications after heart valve surgery. J Crit Care. 2013;28:533e1–7.  https://doi.org/10.1016/j.jcrc.2012.12.009.CrossRefGoogle Scholar
  111. 111.
    Matsunaga K, Yanagisawa S, Ichikawa T, Ueshima K, Akamatsu K, Hirano T, et al. Airway cytokine expression measured by means of protein array in exhaled breath condensate: correlation with physiologic properties in asthmatic patients. J Allergy Clin Immunol. 2006;118:84–90.  https://doi.org/10.1016/j.jaci.2006.04.020.CrossRefPubMedGoogle Scholar
  112. 112.
    Chen JL, Lv XD, Ma H, Chen JR, Huang JA. Detection of cancer embryo antigen and endothelin-1 in exhaled breath condensate: a novel approach to investigate non-small cell lung cancer. Mol Clin Oncol. 2016;5:124–8.  https://doi.org/10.3892/mco.2016.902.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Ródenas-Torralba E, Peláez-Hernández A, Morales-Rubio C, Morales-Rubio Á, De La Guardia M. Multipumping nitrite determination in exhaled breath condensate. Spectrosc Lett. 2006;39:683–97.  https://doi.org/10.1080/00387010600932760.CrossRefGoogle Scholar
  114. 114.
    Balint B, Donnelly LE, Hanazawa T, Kharitonov SA, Barnes PJ. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax. 2001;56:456–8.  https://doi.org/10.1136/thorax.56.6.456.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Goldoni M, Corradi M, Mozzoni P, Folesani G, Alinovi R, Pinelli S, et al. Concentration of exhaled breath condensate biomarkers after fractionated collection based on exhaled CO2 signal. J Breath Res. 2013;7  https://doi.org/10.1088/1752-7155/7/1/017101.CrossRefGoogle Scholar
  116. 116.
    De Prins S, Dons E, Van Poppel M, Int Panis L, de Mieroop EV, Nelen V, et al. Airway oxidative stress and inflammation markers in exhaled breath from children are linked with exposure to black carbon. Environ Int. 2014;73:440–6.  https://doi.org/10.1016/j.envint.2014.06.017.CrossRefPubMedGoogle Scholar
  117. 117.
    Stiegel MA, Pleil JD, Sobus JR, Morgan MK, Madden MC. Analysis of inflammatory cytokines in human blood, breath condensate, and urine using a multiplex immunoassay platform. Biomarkers. 2015;20:35–46.  https://doi.org/10.3109/1354750X.2014.988646.CrossRefPubMedGoogle Scholar
  118. 118.
    Chen Z, Xu Z, Sun S, Yu Y, Lv D, Cao C, et al. TGF-β1, IL-6, and TNF-α in bronchoalveolar lavage fluid: useful markers for lung cancer? Sci Rep. 2014;4:5595.  https://doi.org/10.1038/srep05595.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Rozy A, Czerniawska J, Stȩpniewska A, Woźbińska B, Goljan A, Puścińska E, et al. Inflammatory markers in the exhaled breath condensate of patients with pulmonary sacroidosis. J Physiol Pharmacol. 2006;57:335–40.PubMedGoogle Scholar
  120. 120.
    Dalaveris E, Kerenidi T, Katsabeki-Katsafli A, Kiropoulos T, Tanou K, Gourgoulianis KI, et al. VEGF, TNF-α and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer. 2009;64:219–25.  https://doi.org/10.1016/j.lungcan.2008.08.015.CrossRefPubMedGoogle Scholar
  121. 121.
    Czebe K, Barta I, Antus B, Valyon M, Horváth I, Kullmann T. Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations. Respir Med. 2008;102:720–5.  https://doi.org/10.1016/j.rmed.2007.12.013.CrossRefPubMedGoogle Scholar
  122. 122.
    Carpagnano GE, Resta O, De Pergola G, Sabato R, Barbaro MPF. The role of obstructive sleep apnea syndrome and obesity in determining leptin in the exhaled breath condensate. J Breath Res. 2010;4:036003.  https://doi.org/10.1088/1752-7155/4/3/036003.CrossRefPubMedGoogle Scholar
  123. 123.
    Carpagnano GE, Spanevello A, Curci C, Salerno F, Palladino GP, Resta O, et al. IL-2, TNF-α, and leptin: local versus systemic concentrations in NSCLC patients. Oncol Res. 2007;16:375.  https://doi.org/10.3727/000000006783980900.CrossRefPubMedGoogle Scholar
  124. 124.
    Lee AL, Button BM, Denehy L, Roberts S, Bamford T, Mu FT, et al. Exhaled breath condensate pepsin: potential noninvasive test for gastroesophageal reflux in COPD and bronchiectasis. Respir Care. 2015;60:244–50.  https://doi.org/10.4187/respcare.03570.CrossRefPubMedGoogle Scholar
  125. 125.
    Robroeks CM, Jöbsis Q, Damoiseaux JG, Heijmans PH, Rosias PP, Hendriks HJ, et al. Cytokines in exhaled breath condensate of children with asthma and cystic fibrosis. Ann Allergy Asthma Immunol. 2006;96:349–55.  https://doi.org/10.1016/S1081-1206(10)61247-1.CrossRefPubMedGoogle Scholar
  126. 126.
    Baeyens WRG, Schulman SG, Calokerinos AC, Zhao Y, García Campaña AM, Nakashima K, et al. Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays. J Pharm Biomed Anal. 1998;17:941–53.  https://doi.org/10.1016/S0731-7085(98)00062-4.CrossRefPubMedGoogle Scholar
  127. 127.
    Lázár Z, Cervenak L, Orosz M, Gálffy G, Komlósi ZI, Bikov A, et al. Adenosine triphosphate concentration of exhaled breath condensate in asthma. Chest. 2010;138:536–42.  https://doi.org/10.1378/chest.10-0085.CrossRefPubMedGoogle Scholar
  128. 128.
    Effros RM, Hoagland KW, Bosbous M, Castillo D, Foss B, Dunning M, et al. Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med. 2002;165:663–9.  https://doi.org/10.1164/ajrccm.165.5.2101018.CrossRefGoogle Scholar
  129. 129.
    Zacharasiewicz A, Wilson N, Lex C, Li A, Kemp M, Donovan J, et al. Repeatability of sodium and chloride in exhaled breath condensates. Pediatr Pulmonol. 2004;37:273–5.  https://doi.org/10.1002/ppul.10431.CrossRefPubMedGoogle Scholar
  130. 130.
    Karyakina E, Lukhnovich A, Yashina E, Statkus M, Tsisin G, Karyakin A. Electrochemical biosensor powered by pre-concentration: improved sensitivity and selectivity towards lactate. Electroanalysis. 2016;28:2389–93.  https://doi.org/10.1002/elan.201600232.CrossRefGoogle Scholar
  131. 131.
    Karyakin AA, Nikulina SV, Vokhmyanina DV, Karyakina EE, Anaev EK, Chuchalin AG. Non-invasive monitoring of diabetes through analysis of the exhaled breath condensate (aerosol). Electrochem Commun. 2017;83:81–4.  https://doi.org/10.1016/j.elecom.2017.09.005.CrossRefGoogle Scholar
  132. 132.
    Bikov A, Galffy G, Tamasi L, Bartusek D, Antus B, Losonczy G, et al. Exhaled breath condensate pH decreases during exercise-induced bronchoconstriction. Respirology. 2014;19:563–9.  https://doi.org/10.1111/resp.12248.CrossRefPubMedGoogle Scholar
  133. 133.
    Melker RJ, Bjoraker DG, Dennis DM, Stewart JD, Batich CD, Booth MM, Horn Jr JF, Youngblood RE. Condensate glucose analyzer, U.S. Patent No. 7,914,460. Washington, DC: U.S. Patent and Trademark Office, 2011.Google Scholar
  134. 134.
    Carlsen K, Anderson S, Bjermer L, Bonini S, Brusasco V, Canonica W, et al. Exercise-induced asthma, respiratory and allergic disorders in elite athletes: epidemiology, mechanisms and diagnosis: part I of the report from the joint task force of the European Respiratory Society (ERS) and the European academy of allergy and clinical immunology (EAACI) in cooperation with GA2LEN. Allergy. 2008;63:387–403.  https://doi.org/10.1111/j.1398-9995.2008.01662.x.CrossRefPubMedGoogle Scholar
  135. 135.
    Svensson S, Isacsson AC, Ljungkvist G, Torén K, Olin AC. Optimization and validation of an ion chromatographic method for the simultaneous determination of sodium, ammonium and potassium in exhaled breath condensate. J Chromatogr B Anal Technol Biomed Life Sci. 2005;814:173–7.  https://doi.org/10.1016/j.jchromb.2004.10.018.CrossRefGoogle Scholar
  136. 136.
    Montuschi P, Ragazzoni E, Valente S, Corbo G, Mondino C, Ciappi G, et al. Validation of leukotriene B4 measurements in exhaled breath condensate. Inflammation Res. 2003;52:69–73.  https://doi.org/10.1007/s000110300003.CrossRefGoogle Scholar
  137. 137.
    Folesani G, Corradi M, Goldoni M, Manini P, Acampa O, Andreoli R, et al. Urea in exhaled breath condensate of uraemics and patients with chronic airway diseases. Acta Biomed. 2008;79:79–86.PubMedGoogle Scholar
  138. 138.
    Csoma Z, Huszár É, Vizi É, Vass G, Szabó Z, Herjavecz I, et al. Adenosine level in exhaled breath increases during exercise-induced bronchoconstriction. Eur Respir J. 2005;25:873–8.  https://doi.org/10.1183/09031936.05.00110204.CrossRefPubMedGoogle Scholar
  139. 139.
    Rihák V, Zatloukal P, Chládková J, Zimulová A, Havlínová Z, Chládek J. Nitrite in exhaled breath condensate as a marker of nitrossative stress in the airways of patients with asthma, COPD, and idiopathic pulmonary fibrosis. J Clin Lab Anal. 2010;24:317–22.  https://doi.org/10.1002/jcla.20408.CrossRefPubMedGoogle Scholar
  140. 140.
    Montuschi P, Martello S, Felli M, Mondino C, Chiarotti M. Ion trap liquid chromatography/tandem mass spectrometry analysis of leukotriene B4 in exhaled breath condensate. Rapid Commun Mass Spectrom. 2004;18:2723–9.  https://doi.org/10.1002/rcm.1682.CrossRefPubMedGoogle Scholar
  141. 141.
    Montuschi P, Martello S, Felli M, Mondino C, Barnes PJ, Chiarotti M. Liquid chromatography/mass spectrometry analysis of exhaled leukotriene B 4 in asthmatic children. Respir Res. 2005;6:119.  https://doi.org/10.1186/1465-9921-6-119.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Pelclová D, Fenclová Z, Kačer P, Navrátil T, Kuzma M, Lebedová J, et al. 8-Isoprostane and leukotrienes in exhaled breath condensate in Czech subjects with silicosis. Ind Health. 2007;45:766–74.  https://doi.org/10.2486/indhealth.45.766.CrossRefPubMedGoogle Scholar
  143. 143.
    Fritscher LG, Post M, Rodrigues MT, Silverman F, Balter M, Chapman KR, et al. Profile of eicosanoids in breath condensate in asthma and COPD. J Breath Res. 2012;6:026001.  https://doi.org/10.1088/1752-7155/6/2/026001.CrossRefPubMedGoogle Scholar
  144. 144.
    Gonzalez-Reche LM, Musiol AK, Müller-Lux A, Kraus T, Göen T. Method optimization and validation for the simultaneous determination of arachidonic acid metabolites in exhaled breath condensate by liquid chromatography-electrospray ionization tandem mass spectrometry. J Occup Med Toxicol. 2006;1:5.  https://doi.org/10.1186/1745-6673-1-5.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Esther CR Jr, Jasin HM, Collins LB, Swenberg JA, Boysen G. A mass spectrometric method to simultaneously measure a biomarker and dilution marker in exhaled breath condensate. Rapid Commun Mass Spectrom. 2008;22:701–5.  https://doi.org/10.1002/rcm.3408.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Syslová K, Kačer P, Kuzma M, Pankrácová A, Fenclová Z, Vlčková Š, et al. LC-ESI-MS/MS method for oxidative stress multimarker screening in the exhaled breath condensate of asbestosis/silicosis patients. J Breath Res. 2010;4:017104.  https://doi.org/10.1088/1752-7155/4/1/017104.CrossRefPubMedGoogle Scholar
  147. 147.
    Jackson TC, Zhang YV, Sime PJ, Phipps RP, Kottmann RM. Development of an accurate and sensitive method for lactate analysis in exhaled breath condensate by LC MS/MS. J Chromatogr B. 2017;1061:468–73.  https://doi.org/10.1016/j.jchromb.2017.07.041.CrossRefGoogle Scholar
  148. 148.
    Konieczna L, Pyszka M, Okońska M, Niedźwiecki M, Bączek T. Bioanalysis of underivatized amino acids in non-invasive exhaled breath condensate samples using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A. 2018;1542:72–81.  https://doi.org/10.1016/j.chroma.2018.02.019.CrossRefPubMedGoogle Scholar
  149. 149.
    Nording ML, Yang J, Hegedus CM, Hegedus CM, Bhushan A, Davis CE, et al. Endogenous levels of five fatty acid metabolites in exhaled breath condensate to monitor asthma by high-performance liquid chromatography: electrospray tandem mass spectrometry. IEEE Sensors J. 2010;10:123–30.  https://doi.org/10.1109/JSEN.2009.2035736.CrossRefGoogle Scholar
  150. 150.
    Bloemen K, Van Den Heuvel R, Govarts E, Hooyberghs J, Nelen V, Witters E, et al. A new approach to study exhaled proteins as potential biomarkers for asthma. Clin Exp Allergy. 2011;41:346–56.  https://doi.org/10.1111/j.1365-2222.2010.03638.x.CrossRefPubMedGoogle Scholar
  151. 151.
    Beck O, Sandqvist S, Eriksen P, Franck J, Palmskog G. Determination of methadone in exhaled breath condensate by liquid chromatography-tandem mass spectrometry. J Anal Toxicol. 2011;35:129–33.  https://doi.org/10.1093/anatox/35.3.129.CrossRefPubMedGoogle Scholar
  152. 152.
    Kononikhin A, Starodubtseva N, Chagovets V, Ryndin A, Burov A, Popov I, et al. Exhaled breath condensate analysis from intubated newborns by nano-HPLC coupled to high resolution MS. J Chromatogr B. 2017;1047:97–105.  https://doi.org/10.1016/j.jchromb.2016.12.036.CrossRefGoogle Scholar
  153. 153.
    Conventz A, Musiol A, Brodowsky C, Müller-Lux A, Dewes P, Kraus T, et al. Simultaneous determination of 3-nitrotyrosine, tyrosine, hydroxyproline and proline in exhaled breath condensate by hydrophilic interaction liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2007;860:78–85.  https://doi.org/10.1016/j.jchromb.2007.10.031.CrossRefGoogle Scholar
  154. 154.
    Schettgen T, Tings A, Brodowsky C, Müller-Lux A, Musiol A, Kraus T. Simultaneous determination of the advanced glycation end product Nɛ-carboxymethyllysine and its precursor, lysine, in exhaled breath condensate using isotope-dilution–hydrophilic-interaction liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem. 2007;387:2783–91.  https://doi.org/10.1007/s00216-007-1163-9.CrossRefPubMedGoogle Scholar
  155. 155.
    Monge ME, Pérez JJ, Dwivedi P, Zhou M, McCarty NA, Stecenko AA, et al. Ion mobility and liquid chromatography/mass spectrometry strategies for exhaled breath condensate glucose quantitation in cystic fibrosis studies. Rapid Commun Mass Spectrom. 2013;27:2263–71.  https://doi.org/10.1002/rcm.6683.CrossRefPubMedGoogle Scholar
  156. 156.
    Fermier B, Blasco H, Godat E, Bocca C, Moënne-Loccoz J, Emond P, et al. Specific metabolome profile of exhaled breath condensate in patients with shock and respiratory failure: a pilot study. Metabolites. 2016;6:26.  https://doi.org/10.3390/metabo6030026.CrossRefPubMedCentralGoogle Scholar
  157. 157.
    Peralbo-Molina A, Calderón-Santiago M, Priego-Capote F, Jurado-Gámez B, Luque de Castro MD. Development of a method for metabolomic analysis of human exhaled breath condensate by gas chromatography-mass spectrometry in high resolution mode. Anal Chim Acta. 2015;887:118–26.  https://doi.org/10.1016/j.aca.2015.07.008.CrossRefPubMedGoogle Scholar
  158. 158.
    Sanak M, Gielicz A, Nagraba K, Kaszuba M, Kumik J, Szczeklik A. Targeted eicosanoids lipidomics of exhaled breath condensate in healthy subjects. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:1796–800.  https://doi.org/10.1016/j.jchromb.2010.05.012.CrossRefPubMedGoogle Scholar
  159. 159.
    Carraro S, Cogo PE, Isak I, Simonato M, Corradi M, Carnielli VP, et al. Baraldi EIA and GC/MS analysis of 8-isoprostane in EBC of children with problematic asthma. Eur Respir J. 2010;35:1364–9.  https://doi.org/10.1183/09031936.00074909.CrossRefPubMedGoogle Scholar
  160. 160.
    Mosquera-Restrepo SF, Caro AC, García LF, Peláez-Jaramillo CA, Rojas M. Fatty acid derivative, chemokine, and cytokine profiles in exhaled breath condensates can differentiate adult and children paucibacillary tuberculosis patients. J Breath Res. 2017;11:016003.CrossRefGoogle Scholar
  161. 161.
    Greguš M, Foret F, Kubáň P. Single-breath analysis using a novel simple sampler and capillary electrophoresis with contactless conductometric detection. Electrophoresis. 2015;36:526–33.  https://doi.org/10.1002/elps.201400456.CrossRefPubMedGoogle Scholar
  162. 162.
    Greguš M, Foret F, Kubáň P. Portable capillary electrophoresis instrument with contactless conductivity detection for on-site analysis of small volumes of biological fluids. J Chromatogr A. 2016;1427:177–85.  https://doi.org/10.1016/j.chroma.2015.11.088.CrossRefPubMedGoogle Scholar
  163. 163.
    Kubáň P, Ďurč P, Bittová M, Foret F. Separation of oxalate, formate and glycolate in human body fluid samples by capillary electrophoresis with contactless conductometric detection. J Chromatogr A. 2014;1325:241.  https://doi.org/10.1016/j.chroma.2013.12.039.CrossRefPubMedGoogle Scholar
  164. 164.
    Greguš M, Foret F, Kindlová D, Pokojová E, Plutinský M, Doubková M, et al. Monitoring the ionic content of exhaled breath condensate in various respiratory diseases by capillary electrophoresis with contactless conductivity detection. J Breath Res. 2015;9:027107.  https://doi.org/10.1088/1752-7155/9/2/027107.CrossRefPubMedGoogle Scholar
  165. 165.
    Kubáň P, Kobrin EG, Kaljurand M. Capillary electrophoresis - a new tool for ionic analysis of exhaled breath condensate. J Chromatogr A. 2012;1267:239–45.  https://doi.org/10.1016/j.chroma.2012.06.085.CrossRefPubMedGoogle Scholar
  166. 166.
    Hodáková J, Preisler J, Foret F, Kubáň P. Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515nm) laser-induced fluorescence detection. J Chromatogr A. 2015;1391:102–8.  https://doi.org/10.1016/j.chroma.2015.02.062.CrossRefPubMedGoogle Scholar
  167. 167.
    Griese M, Noss J, Von Bredow C. Protein pattern of exhaled breath condensate and saliva. Proteomics. 2002;2:690–6.  https://doi.org/10.1002/1615-9861(200206)2:6<690:AID-PROT690>3.0.CO;2-6.CrossRefPubMedGoogle Scholar
  168. 168.
    Gianazza E, Allegra L, Bucchioni E, Eberini I, Puglisi L, Blasi F, et al. Increased keratin content detected by proteomic analysis of exhaled breath condensate from healthy persons who smoke. Am J Med. 2004;117:51–4.  https://doi.org/10.1016/j.amjmed.2004.01.022.CrossRefPubMedGoogle Scholar
  169. 169.
    Lacombe M, Marie-Desvergne C, Combes F, Kraut A, Bruley C, Vandenbrouck Y, et al. Proteomic characterization of human exhaled breath condensate. J Breath Res. 2018;12:021001.CrossRefGoogle Scholar
  170. 170.
    Gessner C, Dihazi H, Brettschneider S, Hammerschmidt S, Kuhn H, Eschrich K, et al. Presence of cytokeratins in exhaled breath condensate of mechanical ventilated patients. Respir Med. 2008;102:299–306.  https://doi.org/10.1016/j.rmed.2007.08.012.CrossRefPubMedGoogle Scholar
  171. 171.
    Fumagalli M, Ferrari F, Luisetti M, Stolk J, Hiemstra PS, Capuano D, et al. Profiling the proteome of exhaled breath condensate in healthy smokers and COPD patients by LC-MS/MS. Int J Mol Sci. 2012;13:13894–910.  https://doi.org/10.3390/ijms131113894.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Greenwald R, Ferdinands JM, Teague WG. Ionic determinants of exhaled breath condensate pH before and after exercise in adolescent athletes. Pediatr Pulmonol. 2009;44:768–77.  https://doi.org/10.1002/ppul.21055.CrossRefGoogle Scholar
  173. 173.
    Ryberg H, Caidahl K. Chromatographic and mass spectrometric methods for quantitative determination of 3-nitrotyrosine in biological samples and their application to human samples. J Chromatogr B Anal Technol Biomed Life Sci. 2007;851:160–71.  https://doi.org/10.1016/j.jchromb.2007.02.001.CrossRefGoogle Scholar
  174. 174.
    Beck O, Olin AC, Mirgorodskaya E. Potential of mass spectrometry in developing clinical laboratory biomarkers of nonvolatiles in exhaled breath. Clin Chem. 2016;62:84–91.  https://doi.org/10.1373/clinchem.2015.239285.CrossRefPubMedGoogle Scholar
  175. 175.
    Syslová K, Kačer P, Kuzma M, Klusáčková P, Fenclová Z, Lebedová J, et al. Determination of 8-iso-prostaglandin F 2α in exhaled breath condensate using combination of immunoseparation and LC–ESI-MS/MS. J Chromatogr B. 2008;867:8–14.  https://doi.org/10.1016/j.jchromb.2008.02.019.CrossRefGoogle Scholar
  176. 176.
    Wang CJ, Yang NH, Liou SH, Lee HL. Fast quantification of the exhaled breath condensate of oxidative stress 8-iso-prostaglandin F2α using on-line solid-phase extraction coupled with liquid chromatography/electrospray ionization mass spectrometry. Talanta. 2010;82:1434–8.  https://doi.org/10.1016/j.talanta.2010.07.015.CrossRefPubMedGoogle Scholar
  177. 177.
    Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem. 2012;402:231–47.  https://doi.org/10.1007/s00216-011-5308-5.CrossRefGoogle Scholar
  178. 178.
    Oyler AR, Armstrong BL, Cha JY, Zhou MX, Yang Q, Robinson RI, et al. Hydrophilic interaction chromatography on amino-silica phases complements reversed-phase high-performance liquid chromatography and capillary electrophoresis for peptide analysis. J Chromatogr A. 1996;724:378–83.  https://doi.org/10.1016/0021-9673(95)00987-6.CrossRefGoogle Scholar
  179. 179.
    Hemström P, Irgum K. Hydrophilic interaction chromatography. J Sep Sci. 2006;29:1784–821.  https://doi.org/10.1002/jssc.200600199.CrossRefPubMedGoogle Scholar
  180. 180.
    Dong MW, Zhang K. Ultra-high-pressure liquid chromatography (UHPLC) in method development. Trends Anal Chem. 2014;63:21–30.  https://doi.org/10.1016/j.trac.2014.06.019.CrossRefGoogle Scholar
  181. 181.
    Wu N, Welch CJ, Natishan TK, Gao H, Chandrasekaran T, Zhang L. Practical aspects of ultrahigh performance liquid chromatography. In: Alan Xu Q, editor. Ultra-high performance liquid chromatography and its applications. Hoboken: Wiley; 2013. p. 55–94.  https://doi.org/10.1002/9781118533956.ch3.CrossRefGoogle Scholar
  182. 182.
    Wang JH, Byun J, Pennathur S. Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol. 2010;30:500–11.  https://doi.org/10.1016/j.semnephrol.2010.07.007.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics. 2011;7:307–28.  https://doi.org/10.1007/s11306-010-0254-3.CrossRefPubMedGoogle Scholar
  184. 184.
    Quinones MP, Kaddurah-Daouk R. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis. 2009;35:165–76.  https://doi.org/10.1016/j.nbd.2009.02.019.CrossRefPubMedGoogle Scholar
  185. 185.
    Augusto F, Hantao LW, Mogollon NG, Braga SC. New materials and trends in sorbents for solid-phase extraction. Trends Anal Chem. 2013;43:14–23.  https://doi.org/10.1016/j.trac.2012.08.012.CrossRefGoogle Scholar
  186. 186.
    Carpenter CT, Price PV, Christman BW. Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS. Chest. 1998;114:1653–9.  https://doi.org/10.1378/chest.114.6.1653.CrossRefPubMedGoogle Scholar
  187. 187.
    Grabowska-Polanowska B, Faber J, Skowron M, Miarka P, Pietrzycka A, Śliwka I, et al. Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. J Chromatogr A. 2013;1301:179–89.  https://doi.org/10.1016/j.chroma.2013.05.012.CrossRefPubMedGoogle Scholar
  188. 188.
    Kemp G. Capillary electrophoresis. Biotechnol Appl Biochem. 1998;27:9–17.  https://doi.org/10.1111/j.1470-8744.1998.tb01369.x.CrossRefPubMedGoogle Scholar
  189. 189.
    Beck W, van Hoek R, Engelhardt H. Application of a diode-array detector in capillary electrophoresis. Electrophoresis. 1993;14:540–6.  https://doi.org/10.1002/elps.1150140182.CrossRefPubMedGoogle Scholar
  190. 190.
    Kuban P, Karlberg B. Simultaneous determination of small cations and anions by capillary electrophoresis. Anal Chem. 1998;70:360–5.  https://doi.org/10.1021/ac9706133.CrossRefGoogle Scholar
  191. 191.
    Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem. 2003;278:49636–43.  https://doi.org/10.1074/jbc.M307996200.CrossRefPubMedGoogle Scholar
  192. 192.
    Zang X, Pérez JJ, Jones CM, Monge ME, McCarty NA, Stecenko AA, et al. Comparison of ambient and atmospheric pressure ion sources for cystic fibrosis exhaled beath condensate ion mobility-mass spectrometry metabolomics. J Am Soc Mass Spectrom. 2017;28:1489–96.  https://doi.org/10.1007/s13361-017-1660-9.CrossRefPubMedGoogle Scholar
  193. 193.
    Rumsby P. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols-A guide to methods and applications. San Diego: Academic Press Inc.; 1990.Google Scholar
  194. 194.
    Gessner C, Kuhn H, Toepfer K, Hammerschmidt S, Schauer J, Wirtz H. Detection of p53 gene mutations in exhaled breath condensate of non-small cell lung cancer patients. Lung Cancer. 2004;43:215–22.  https://doi.org/10.1016/j.lungcan.2003.08.034.CrossRefPubMedGoogle Scholar
  195. 195.
    Carpagnano GE, Foschino-Barbaro MP, Mulé G, Resta O, Tommasi S, Mangia A, et al. 3p microsatellite alterations in exhaled breath condensate from patients with non-small cell lung cancer. Am J Respir Crit Care Med. 2005;172:738–44.  https://doi.org/10.1164/rccm.200503-439OC.CrossRefPubMedGoogle Scholar
  196. 196.
    Jain R, Schriever CA, Danziger LH, Cho SH, Rubinstein I. The IS6110 repetitive DNA element of Mycobacterium tuberculosis is not detected in exhaled breath condensate of patients with active pulmonary tuberculosis. Respiration. 2007;74:329–33.  https://doi.org/10.1159/000101786.CrossRefPubMedGoogle Scholar
  197. 197.
    Bhimji A, Singer L, Kumar D, Humar A, Pavan R, Zhang H, et al. Feasibility of detecting fungal DNA in exhaled breath condensate by the Luminex multiplex xTAG fungal PCR assay in lung transplant recipients: a pilot study. J Heart Lung Transpl. 2016;35:S37.CrossRefGoogle Scholar
  198. 198.
    May AK, Brady JS, Romano-Keeler J, Drake WP, Norris PR, Jenkins JM, et al. A pilot study of the noninvasive assessment of the lung microbiota as a potential tool for the early diagnosis of ventilator-associated pneumonia. Chest. 2015;147:1494–502.  https://doi.org/10.1378/chest.14-1687.CrossRefPubMedGoogle Scholar
  199. 199.
    Carpagnano GE, Koutelou A, Natalicchio MI, Martinelli D, Ruggieri C, Di Taranto A, et al. HPV in exhaled breath condensate of lung cancer patients. Br J Cancer. 2011;105:1183–90.  https://doi.org/10.1038/bjc.2011.354.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Roff AN, Craig TJ, August A, Stellato C, Ishmael FT. MicroRNA-570-3p regulates HuR and cytokine expression in airway epithelial cells. Am J Clin Exp Immunol. 2014;3:68–83.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Pinkerton M, Chinchilli V, Banta E, Craig T, August A, Bascom R, et al. Differential expression of microRNAs in exhaled breath condensates of patients with asthma, patients with chronic obstructive pulmonary disease, and healthy adults. J Allergy Clin Immunol. 2013;132:217–9.  https://doi.org/10.1016/j.jaci.2013.03.006.CrossRefPubMedGoogle Scholar
  202. 202.
    Yang Ai SS, Hsu K, Herbert C, Cheng Z, Hunt J, Lewis CR, et al. Mitochondrial DNA mutations in exhaled breath condensate of patients with lung cancer. Respir Med. 2013;107:911–8.  https://doi.org/10.1016/j.rmed.2013.02.007.CrossRefPubMedGoogle Scholar
  203. 203.
    Zhang X, Zou Y, An C, Ying K, Chen X, Wang P. A miniaturized immunosensor platform for automatic detection of carcinoembryonic antigen in EBC. Sensors Actuators B Chem. 2014;205:94–101.  https://doi.org/10.1016/j.snb.2014.08.011.CrossRefGoogle Scholar
  204. 204.
    Chu BH, Kang BS, Hung SC, Chen KH, Ren F, Sciullo A, et al. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate. J Diabetes Sci Technol. 2010;4:171–9.  https://doi.org/10.1177/193229681000400122.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Chu BH, Kang B, Chang C, Ren F, Goh A, Sciullo A, et al. Wireless detection system for glucose and pH sensing in exhaled breath condensate using AlGaN/GaN high electron mobility transistors. IEEE Sensors J. 2010;10:64–70.  https://doi.org/10.1109/JSEN.2009.2035213.CrossRefGoogle Scholar
  206. 206.
    Carraro S, Rezzi S, Reniero F, Héberger K, Giordano G, Zanconato S, et al. Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med. 2007;175:986–90.  https://doi.org/10.1164/rccm.200606-769OC.CrossRefPubMedGoogle Scholar
  207. 207.
    De Laurentiis G, Paris D, Melck D, Maniscalco M, Marsico S, Corso G, et al. Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. Eur Respir J. 2008;32:1175–83.  https://doi.org/10.1183/09031936.00072408.CrossRefPubMedGoogle Scholar
  208. 208.
    Paris D, Maniscalco M, Melck D, D’Amato M, Sorrentino N, Zedda A, et al. Inflammatory metabolites in exhaled breath condensate characterize the obese respiratory phenotype. Metabolomics. 2015;11:1934–9.  https://doi.org/10.1007/s11306-015-0805-8.CrossRefGoogle Scholar
  209. 209.
    Motta A, Paris D, D'Amato M, Melck D, Calabrese C, Vitale C, et al. NMR metabolomic analysis of exhaled breath condensate of asthmatic patients at two different temperatures. J Proteome Res. 2014;13:6107–20.  https://doi.org/10.1021/pr5010407.CrossRefPubMedGoogle Scholar
  210. 210.
    Montuschi P, Paris D, Melck D, Lucidi V, Ciabattoni G, Raia V, et al. NMR spectroscopy metabolomic profiling of exhaled breath condensate in patients with stable and unstable cystic fibrosis. Thorax. 2012;67:222–8.  https://doi.org/10.1136/thoraxjnl-2011-200072.CrossRefPubMedGoogle Scholar
  211. 211.
    Airoldi C, Ciaramelli C, Fumagalli M, Bussei R, Mazzoni V, Viglio S, et al. 1H NMR to explore the metabolome of exhaled breath condensate in α1-antitrypsin deficient patients: a pilot study. J Proteome Res. 2016;15:4569–78.  https://doi.org/10.1021/acs.jproteome.6b00648.CrossRefPubMedGoogle Scholar
  212. 212.
    Ahmed N, Bezabeh T, Ijare OB, Myers R, Alomran R, Aliani M, et al. Metabolic signatures of lung cancer in sputum and exhaled breath condensate detected by 1H magnetic resonance spectroscopy: a feasibility study. Magn Reson Insights. 2016;9:29–35.  https://doi.org/10.4137/MRI.S40864. CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Surendiran A, Sandhiya S, Pradhan SC, Adithan C. Novel applications of nanotechnology in medicine. Indian J Med Res. 2009;130:689–701.PubMedGoogle Scholar
  214. 214.
    Melker R, Dennis D. Combined nanotechnology and sensor technologies for simultaneous diagnosis and treatment, U.S. Patent Application No. 10/744,789, 2003.Google Scholar
  215. 215.
    Melker R, Dennis D, Martin C. Stewart J Novel application of biosensors for diagnosis and treatment of disease, US Patent Application No. 2005;11(/296):757.Google Scholar
  216. 216.
    Gruhl F, Rapp B, Rapp M, Länge K. Surface acoustic wave (SAW) biosensor chip system-a promising alternative for biomedical applications, In World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany, Springer, 2009, pp. 73–76.Google Scholar
  217. 217.
    Ren F, Pearton SJ, Lele T, Wang HT, Kang BS. Sensors using high electron mobility transistors, U.S. patent no. 8,835,984. Washington, DC: U.S. patent and trademark Office, 2014.Google Scholar
  218. 218.
    Lindon JC, Holmes E, Nicholson JK. Pattern recognition methods and applications in biomedical magnetic resonance. Prog Nucl Magn Reson Spectrosc. 2001;39:1–40.  https://doi.org/10.1016/S0079-6565(00)00036-4. CrossRefGoogle Scholar
  219. 219.
    Fathi F, Ektefa F, Arefi Oskouie A, Rostami K, Rezaei-Tavirani M, Mohammad Alizadeh AH, et al. NMR based metabonomics study on celiac disease in the blood serum. Gastroenterol Hepatol Bed Bench. 2013;6:190–4.PubMedPubMedCentralGoogle Scholar
  220. 220.
    Fathi F, Kasmaee LM, Sohrabzadeh K, Nejad MR, Tafazzoli M, Oskouie AA. The differential diagnosis of Crohn's disease and celiac disease using nuclear magnetic resonance spectroscopy. Appl Magn Reson. 2014;45:451–9.  https://doi.org/10.1007/s00723-014-0530-x.CrossRefGoogle Scholar
  221. 221.
    Godet C, Hira M, Adoun M, Eugène M, Robert R. Rapid diagnosis of alcoholic ketoacidosis by proton NMR. Intensive Care Med. 2001;27:785–6.  https://doi.org/10.1007/s001340100892.CrossRefPubMedGoogle Scholar
  222. 222.
    Maniscalco M, Paris D, Melck DJ, D'Amato M, Zedda A, Sofia M, et al. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J Allergy Clin Immunol. 2017;139:1536–47.  https://doi.org/10.1016/j.jaci.2016.08.038.CrossRefPubMedGoogle Scholar
  223. 223.
    Ząbek A, Stanimirova I, Deja S, Barg W, Kowal A, Korzeniewska A, et al. Fusion of the 1H NMR data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome. Metabolomics. 2015;11:1563–74.  https://doi.org/10.1007/s11306-015-0808-5.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Khoubnasabjafari M, Rahimpour E, Jouyban A. Exhaled breath condensate as an alternative sample for drug monitoring. Bioanalysis. 2018;10:61–4.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elaheh Rahimpour
    • 1
  • Maryam Khoubnasabjafari
    • 2
  • Vahid Jouyban-Gharamaleki
    • 3
  • Abolghasem Jouyban
    • 1
    • 4
  1. 1.Pharmaceutical Analysis Research Center and Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
  2. 2.Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
  3. 3.Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
  4. 4.Kimia Idea Pardaz Azarbayjan (KIPA) Science Based CompanyTabriz University of Medical SciencesTabrizIran

Personalised recommendations